1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | // // Kerbal Engineer Redux // // Copyright (C) 2014 CYBUTEK // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // #region Using Directives using System; using KerbalEngineer.Extensions; using KerbalEngineer.Helpers; #endregion namespace KerbalEngineer.Flight.Readouts.Rendezvous { public class RendezvousProcessor : IUpdatable, IUpdateRequest { #region Fields private static readonly RendezvousProcessor instance = new RendezvousProcessor(); private Orbit originOrbit; private Orbit targetOrbit; #endregion #region Properties /// <summary> /// Gets the target's altitude above its reference body. /// </summary> public static double AltitudeSeaLevel { get; private set; } /// <summary> /// Gets the angle from the origin position to the ascending node. /// </summary> public static double AngleToAscendingNode { get; private set; } /// <summary> /// Gets the angle from the origin position to the descending node. /// </summary> public static double AngleToDescendingNode { get; private set; } /// <summary> /// Gets the target's apoapsis above its reference body. /// </summary> public static double ApoapsisHeight { get; private set; } /// <summary> /// Gets the distance from the origin position to the target position. /// </summary> public static double Distance { get; private set; } /// <summary> /// Gets the current instance of the rendezvous processor. /// </summary> public static RendezvousProcessor Instance { get { return instance; } } /// <summary> /// Gets the difference in angle from the origin position to where it is most efficient to burn for an encounter. /// </summary> public static double InterceptAngle { get; private set; } /// <summary> /// Gets the orbital period of the target orbit. /// </summary> public static double OrbitalPeriod { get; private set; } /// <summary> /// Gets the target's periapsis above its reference body. /// </summary> public static double PeriapsisHeight { get; private set; } /// <summary> /// Gets the difference in angle from the origin position to the target position based on a common reference. /// </summary> public static double PhaseAngle { get; private set; } /// <summary> /// Gets the angular difference between the origin and target orbits. /// </summary> public static double RelativeInclination { get; private set; } /// <summary> /// Gets the relative orbital speed between the vessel and target. /// </summary> public static double RelativeSpeed { get; private set; } /// <summary> /// Gets the relative orbital velocity between the vessel and target. /// </summary> public static double RelativeVelocity { get; private set; } /// <summary> /// Gets the semi-major axis of the target orbit. /// </summary> public static double SemiMajorAxis { get; private set; } /// <summary> /// Gets the semi-minor axis of the target orbit. /// </summary> public static double SemiMinorAxis { get; private set; } /// <summary> /// Gets whether the details are ready to be shown. /// </summary> public static bool ShowDetails { get; private set; } /// <summary> /// Gets the target's time to apoapsis. /// </summary> public static double TimeToApoapsis { get; private set; } /// <summary> /// Gets the time it will take to reach the ascending node. /// </summary> public static double TimeToAscendingNode { get; private set; } /// <summary> /// Gets the time it will take to reach the descending node. /// </summary> public static double TimeToDescendingNode { get; private set; } /// <summary> /// Gets the target's time to periapsis. /// </summary> public static double TimeToPeriapsis { get; private set; } /// <summary> /// Gets and sets whether the updatable object should be updated. /// </summary> public bool UpdateRequested { get; set; } #endregion #region Methods: public /// <summary> /// Request and update to calculate the details. /// </summary> public static void RequestUpdate() { instance.UpdateRequested = true; } /// <summary> /// Updates the details by recalculating if requested. /// </summary> public void Update() { if (FlightGlobals.fetch.VesselTarget == null) { ShowDetails = false; return; } ShowDetails = true; this.targetOrbit = FlightGlobals.fetch.VesselTarget.GetOrbit(); this.originOrbit = (FlightGlobals.ship_orbit.referenceBody == Planetarium.fetch.Sun || FlightGlobals.ship_orbit.referenceBody == FlightGlobals.ActiveVessel.targetObject.GetOrbit().referenceBody) ? FlightGlobals.ship_orbit : FlightGlobals.ship_orbit.referenceBody.orbit; RelativeInclination = this.originOrbit.GetRelativeInclination(this.targetOrbit); RelativeVelocity = FlightGlobals.ship_tgtSpeed; RelativeSpeed = FlightGlobals.ship_obtSpeed - this.targetOrbit.orbitalSpeed; PhaseAngle = this.originOrbit.GetPhaseAngle(this.targetOrbit); InterceptAngle = this.CalcInterceptAngle(); TimeToAscendingNode = this.originOrbit.GetTimeToVector(this.GetAscendingNode()); TimeToDescendingNode = this.originOrbit.GetTimeToVector(this.GetDescendingNode()); AngleToAscendingNode = this.originOrbit.GetAngleToVector(this.GetAscendingNode()); AngleToDescendingNode = this.originOrbit.GetAngleToVector(this.GetDescendingNode()); AltitudeSeaLevel = this.targetOrbit.altitude; ApoapsisHeight = this.targetOrbit.ApA; PeriapsisHeight = this.targetOrbit.PeA; TimeToApoapsis = this.targetOrbit.timeToAp; TimeToPeriapsis = this.targetOrbit.timeToPe; SemiMajorAxis = this.targetOrbit.semiMajorAxis; SemiMinorAxis = this.targetOrbit.semiMinorAxis; Distance = Vector3d.Distance(this.targetOrbit.pos, this.originOrbit.pos); OrbitalPeriod = this.targetOrbit.period; } #endregion #region Methods: private private double CalcInterceptAngle() { var originRadius = (this.originOrbit.semiMinorAxis + this.originOrbit.semiMajorAxis) * 0.5; var targetRadius = (this.targetOrbit.semiMinorAxis + this.targetOrbit.semiMajorAxis) * 0.5; var angle = 180.0 * (1.0 - Math.Pow((originRadius + targetRadius) / (2.0 * targetRadius), 1.5)); angle = PhaseAngle - angle; return RelativeInclination < 90.0 ? AngleHelper.Clamp360(angle) : AngleHelper.Clamp360(360.0 - (180.0 - angle)); } private Vector3d GetAscendingNode() { return Vector3d.Cross(this.targetOrbit.GetOrbitNormal(), this.originOrbit.GetOrbitNormal()); } private Vector3d GetDescendingNode() { return Vector3d.Cross(this.originOrbit.GetOrbitNormal(), this.targetOrbit.GetOrbitNormal()); } #endregion } } |