Initial commit (1.0_dev)
[VOID.git] / Tools.cs
blob:a/Tools.cs -> blob:b/Tools.cs
--- a/Tools.cs
+++ b/Tools.cs
@@ -1,617 +1,1034 @@
-//

-//  Tools.cs

-//

-//  Author:

-//       toadicus

-//

-//  Copyright (c) 2013 toadicus

-//

-//  This program is free software: you can redistribute it and/or modify

-//  it under the terms of the GNU General Public License as published by

-//  the Free Software Foundation, either version 3 of the License, or

-//  (at your option) any later version.

-//

-//  This program is distributed in the hope that it will be useful,

-//  but WITHOUT ANY WARRANTY; without even the implied warranty of

-//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

-//  GNU General Public License for more details.

-//

-//  You should have received a copy of the GNU General Public License

-//  along with this program.  If not, see <http://www.gnu.org/licenses/>.

-//

-//  This software uses VesselSimulator and Engineer.Extensions from Engineer Redux.

-//  Engineer Redux (c) 2013 cybutek

-//  Used by permission.

-//

-///////////////////////////////////////////////////////////////////////////////

-

-

-using System;

-using UnityEngine;

-

-namespace VOID

-{

-	public class VOIDLabels

-	{

-		public string void_primary;

-		public string void_altitude_asl;

-		public string void_velocity;

-		public string void_apoapsis;

-		public string void_periapsis;

-	}

-

-	public static class Tools

-	{

-		// Toadicus edit: Added re-implementation of the CBAttributeMap.GetAtt function that does not fire a debug message to the game screen.

-		public static CBAttributeMap.MapAttribute Toadicus_GetAtt(Vessel vessel)

-		{

-			CBAttributeMap.MapAttribute mapAttribute;

-

-			try

-			{

-				CBAttributeMap BiomeMap = vessel.mainBody.BiomeMap;

-				double lat = vessel.latitude * Math.PI / 180d;

-				double lon = vessel.longitude * Math.PI / 180d;

-

-				lon -= Math.PI / 2d;

-

-				if (lon < 0d)

-				{

-					lon += 2d * Math.PI;

-				}

-

-				float v = (float)(lat / Math.PI) + 0.5f;

-				float u = (float)(lon / (2d * Math.PI));

-

-				Color pixelBilinear = BiomeMap.Map.GetPixelBilinear (u, v);

-				mapAttribute = BiomeMap.defaultAttribute;

-

-				if (BiomeMap.Map != null)

-				{

-					if (BiomeMap.exactSearch)

-					{

-						for (int i = 0; i < BiomeMap.Attributes.Length; ++i)

-						{

-							if (pixelBilinear == BiomeMap.Attributes[i].mapColor)

-							{

-								mapAttribute = BiomeMap.Attributes[i];

-							}

-						}

-					}

-					else

-					{

-						float zero = 0;

-						float num = 1 / zero;

-						for (int j = 0; j < BiomeMap.Attributes.Length; ++j)

-						{

-							Color mapColor = BiomeMap.Attributes [j].mapColor;

-							float sqrMagnitude = ((Vector4)(mapColor - pixelBilinear)).sqrMagnitude;

-							if (sqrMagnitude < num)

-							{

-								bool testCase = true;

-								if (BiomeMap.nonExactThreshold != -1)

-								{

-									testCase = (sqrMagnitude < BiomeMap.nonExactThreshold);

-								}

-								if (testCase)

-								{

-									mapAttribute = BiomeMap.Attributes[j];

-									num = sqrMagnitude;

-								}

-							}

-						}

-					}

-				}

-			}

-			catch (NullReferenceException)

-			{

-				mapAttribute = new CBAttributeMap.MapAttribute();

-				mapAttribute.name = "N/A";

-			}

-

-			return mapAttribute;

-		}

-

-		public static string GetLongitudeString(Vessel vessel, string format="F4")

-		{

-			string dir_long = "W";

-			double v_long = vessel.longitude;

-

-			v_long = FixDegreeDomain(v_long);

-

-			if (v_long < -180d)

-			{

-				v_long += 360d;

-			}

-			if (v_long >= 180)

-			{

-				v_long -= 360d;

-			}

-

-			if (v_long > 0) dir_long = "E";

-

-			return string.Format("{0}° {1}", Math.Abs(v_long).ToString(format), dir_long);

-		}

-

-		public static string GetLatitudeString(Vessel vessel, string format="F4")

-		{

-			string dir_lat = "S";

-			double v_lat = vessel.latitude;

-			if (v_lat > 0) dir_lat = "N";

-

-			return string.Format("{0}° {1}", Math.Abs(v_lat).ToString(format), dir_lat);

-		}

-

-        ///////////////////////////////////////////////////////////////////////////////

-

-        //For MuMech_get_heading()

-        public class MuMech_MovingAverage

-        {

-            private double[] store;

-            private int storeSize;

-            private int nextIndex = 0;

-

-            public double value

-            {

-                get

-                {

-                    double tmp = 0;

-                    foreach (double i in store)

-                    {

-                        tmp += i;

-                    }

-                    return tmp / storeSize;

-                }

-                set

-                {

-                    store[nextIndex] = value;

-                    nextIndex = (nextIndex + 1) % storeSize;

-                }

-            }

-

-            public MuMech_MovingAverage(int size = 10, double startingValue = 0)

-            {

-                storeSize = size;

-                store = new double[size];

-                force(startingValue);

-            }

-

-            public void force(double newValue)

-            {

-                for (int i = 0; i < storeSize; i++)

-                {

-                    store[i] = newValue;

-                }

-            }

-

-            public static implicit operator double(MuMech_MovingAverage v)

-            {

-                return v.value;

-            }

-

-            public override string ToString()

-            {

-                return value.ToString();

-            }

-

-            public string ToString(string format)

-            {

-                return value.ToString(format);

-            }

-        }

-

-        //From http://svn.mumech.com/KSP/trunk/MuMechLib/VOID.vesselState.cs

-        public static double MuMech_get_heading(Vessel vessel)

-        {

-            Vector3d CoM = vessel.findWorldCenterOfMass();

-            Vector3d up = (CoM - vessel.mainBody.position).normalized;

-            Vector3d north = Vector3d.Exclude(up, (vessel.mainBody.position + vessel.mainBody.transform.up * (float)vessel.mainBody.Radius) - CoM).normalized;

-

-            Quaternion rotationSurface = Quaternion.LookRotation(north, up);

-            Quaternion rotationvesselSurface = Quaternion.Inverse(Quaternion.Euler(90, 0, 0) * Quaternion.Inverse(vessel.transform.rotation) * rotationSurface);

-            MuMech_MovingAverage vesselHeading = new MuMech_MovingAverage();

-            vesselHeading.value = rotationvesselSurface.eulerAngles.y;

-            return vesselHeading.value * 10;    // *10 by me

-        }

-

-        //From http://svn.mumech.com/KSP/trunk/MuMechLib/MuUtils.cs

-        public static string MuMech_ToSI(double d)

-        {

-            int digits = 2;

-            double exponent = Math.Log10(Math.Abs(d));

-            if (Math.Abs(d) >= 1)

-            {

-                switch ((int)Math.Floor(exponent))

-                {

-                    case 0:

-                    case 1:

-                    case 2:

-                        return d.ToString("F" + digits);

-                    case 3:

-                    case 4:

-                    case 5:

-                        return (d / 1e3).ToString("F" + digits) + "k";

-                    case 6:

-                    case 7:

-                    case 8:

-                        return (d / 1e6).ToString("F" + digits) + "M";

-                    case 9:

-                    case 10:

-                    case 11:

-                        return (d / 1e9).ToString("F" + digits) + "G";

-                    case 12:

-                    case 13:

-                    case 14:

-                        return (d / 1e12).ToString("F" + digits) + "T";

-                    case 15:

-                    case 16:

-                    case 17:

-                        return (d / 1e15).ToString("F" + digits) + "P";

-                    case 18:

-                    case 19:

-                    case 20:

-                        return (d / 1e18).ToString("F" + digits) + "E";

-                    case 21:

-                    case 22:

-                    case 23:

-                        return (d / 1e21).ToString("F" + digits) + "Z";

-                    default:

-                        return (d / 1e24).ToString("F" + digits) + "Y";

-                }

-            }

-            else if (Math.Abs(d) > 0)

-            {

-                switch ((int)Math.Floor(exponent))

-                {

-                    case -1:

-                    case -2:

-                    case -3:

-                        return (d * 1e3).ToString("F" + digits) + "m";

-                    case -4:

-                    case -5:

-                    case -6:

-                        return (d * 1e6).ToString("F" + digits) + "μ";

-                    case -7:

-                    case -8:

-                    case -9:

-                        return (d * 1e9).ToString("F" + digits) + "n";

-                    case -10:

-                    case -11:

-                    case -12:

-                        return (d * 1e12).ToString("F" + digits) + "p";

-                    case -13:

-                    case -14:

-                    case -15:

-                        return (d * 1e15).ToString("F" + digits) + "f";

-                    case -16:

-                    case -17:

-                    case -18:

-                        return (d * 1e18).ToString("F" + digits) + "a";

-                    case -19:

-                    case -20:

-                    case -21:

-                        return (d * 1e21).ToString("F" + digits) + "z";

-                    default:

-                        return (d * 1e24).ToString("F" + digits) + "y";

-                }

-            }

-            else

-            {

-                return "0";

-            }

-        }

-

-        public static string ConvertInterval(double seconds)

-        {

-            string format_1 = "{0:D1}y {1:D1}d {2:D2}h {3:D2}m {4:D2}.{5:D1}s";

-            string format_2 = "{0:D1}d {1:D2}h {2:D2}m {3:D2}.{4:D1}s";

-            string format_3 = "{0:D2}h {1:D2}m {2:D2}.{3:D1}s";

-

-			TimeSpan interval;

-

-			try

-			{

-            	interval = TimeSpan.FromSeconds(seconds);

-			}

-			catch (OverflowException)

-			{

-				return "NaN";

-			}

-

-            int years = interval.Days / 365;

-

-            string output;

-            if (years > 0)

-            {

-                output = string.Format(format_1,

-                    years,

-                    interval.Days - (years * 365), //  subtract years * 365 for accurate day count

-                    interval.Hours,

-                    interval.Minutes,

-                    interval.Seconds,

-                    interval.Milliseconds.ToString().Substring(0, 1));

-            }

-            else if (interval.Days > 0)

-            {

-                output = string.Format(format_2,

-                    interval.Days,

-                    interval.Hours,

-                    interval.Minutes,

-                    interval.Seconds,

-                    interval.Milliseconds.ToString().Substring(0, 1));

-            }

-            else

-            {

-                output = string.Format(format_3,

-                    interval.Hours,

-                    interval.Minutes,

-                    interval.Seconds,

-                    interval.Milliseconds.ToString().Substring(0, 1));

-            }

-            return output;

-        }

-

-        public static string UppercaseFirst(string s)

-        {

-            if (string.IsNullOrEmpty(s))

-            {

-                return string.Empty;

-            }

-            char[] a = s.ToCharArray();

-            a[0] = char.ToUpper(a[0]);

-            return new string(a);

-        }

-

-        //transfer angles

-

-        public static double Nivvy_CalcTransferPhaseAngle(double r_current, double r_target, double grav_param)

-        {

-            double T_target = (2 * Math.PI) * Math.Sqrt(Math.Pow((r_target / 1000), 3) / (grav_param / 1000000000));

-            double T_transfer = (2 * Math.PI) * Math.Sqrt(Math.Pow((((r_target / 1000) + (r_current / 1000)) / 2), 3) / (grav_param / 1000000000));

-            return 360 * (0.5 - (T_transfer / (2 * T_target)));

-        }

-

-        public static double Younata_DeltaVToGetToOtherBody(double mu, double r1, double r2)

-        {

-            /*

-            def deltaVToGetToOtherBody(mu, r1, r2):

-            # mu = gravity param of common orbiting body of r1 and r2

-            # (e.g. for mun to minmus, mu is kerbin's gravity param

-            # r1 = initial body's orbit radius

-            # r2 = target body's orbit radius

-		

-            # return value is km/s

-            sur1 = math.sqrt(mu / r1)

-            sr1r2 = math.sqrt(float(2*r2)/float(r1+r2))

-            mult = sr1r2 - 1

-            return sur1 * mult

-            */

-            double sur1, sr1r2, mult;

-            sur1 = Math.Sqrt(mu / r1);

-            sr1r2 = Math.Sqrt((2 * r2) / (r1 + r2));

-            mult = sr1r2 - 1;

-            return sur1 * mult;

-        }

-

-        public static double Younata_DeltaVToExitSOI(double mu, double r1, double r2, double v)

-        {

-            /*

-            def deltaVToExitSOI(mu, r1, r2, v):

-            # mu = gravity param of current body

-            # r1 = current orbit radius

-            # r2 = SOI radius

-            # v = SOI exit velocity

-            foo = r2 * (v**2) - 2 * mu

-            bar = r1 * foo + (2 * r2 * mu)

-            r = r1*r2

-            return math.sqrt(bar / r)

-            */

-            double foo = r2 * Math.Pow(v, 2) - 2 * mu;

-            double bar = r1 * foo + (2 * r2 * mu);

-            double r = r1 * r2;

-            return Math.Sqrt(bar / r);

-        }

-

-        public static double Younata_TransferBurnPoint(double r, double v, double angle, double mu)

-        {

-            /*

-            def transferBurnPoint(r, v, angle, mu):

-            # r = parking orbit radius

-            # v = ejection velocity

-            # angle = phase angle (from function phaseAngle())

-            # mu = gravity param of current body.

-            epsilon = ((v**2)/2) - (mu / r)

-            h = r * v * math.sin(angle)

-            e = math.sqrt(1 + ((2 * epsilon * h**2)/(mu**2)))

-            theta = math.acos(1.0 / e)

-            degrees = theta * (180.0 / math.pi)

-            return 180 - degrees

-            */

-            double epsilon, h, ee, theta, degrees;

-            epsilon = (Math.Pow(v, 2) / 2) - (mu / r);

-            h = r * v * Math.Sin(angle);

-            ee = Math.Sqrt(1 + ((2 * epsilon * Math.Pow(h, 2)) / Math.Pow(mu, 2)));

-            theta = Math.Acos(1.0 / ee);

-            degrees = theta * (180.0 / Math.PI);

-            return 180 - degrees;

-            // returns the ejection angle

-        }

-

-        public static double Adammada_CurrrentPhaseAngle(double body_LAN, double body_orbitPct, double origin_LAN, double origin_orbitPct)

-        {

-            double angle = (body_LAN / 360 + body_orbitPct) - (origin_LAN / 360 + origin_orbitPct);

-            if (angle > 1) angle = angle - 1;

-            if (angle < 0) angle = angle + 1;

-            if (angle > 0.5) angle = angle - 1;

-            angle = angle * 360;

-            return angle;

-        }

-

-        public static double Adammada_CurrentEjectionAngle(double vessel_long, double origin_rotAngle, double origin_LAN, double origin_orbitPct)

-        {

-            //double eangle = ((FlightGlobals.ActiveVOID.vessel.longitude + orbiting.rotationAngle) - (orbiting.orbit.LAN / 360 + orbiting.orbit.orbitPercent) * 360);

-            double eangle = ((vessel_long + origin_rotAngle) - (origin_LAN / 360 + origin_orbitPct) * 360);

-

-            while (eangle < 0) eangle = eangle + 360;

-            while (eangle > 360) eangle = eangle - 360;

-            if (eangle < 270) eangle = 90 - eangle;

-            else eangle = 450 - eangle;

-            return eangle;

-        }

-

-        public static double mrenigma03_calcphase(Vessel vessel, CelestialBody target)   //calculates phase angle between the current body and target body

-        {

-            Vector3d vecthis = new Vector3d();

-            Vector3d vectarget = new Vector3d();

-            vectarget = target.orbit.getRelativePositionAtUT(Planetarium.GetUniversalTime());

-

-            if ((vessel.mainBody.name == "Sun") || (vessel.mainBody.referenceBody.referenceBody.name == "Sun"))

-            {

-                vecthis = vessel.orbit.getRelativePositionAtUT(Planetarium.GetUniversalTime());

-            }

-            else

-            {

-                vecthis = vessel.mainBody.orbit.getRelativePositionAtUT(Planetarium.GetUniversalTime());

-            }

-

-            vecthis = Vector3d.Project(new Vector3d(vecthis.x, 0, vecthis.z), vecthis);

-            vectarget = Vector3d.Project(new Vector3d(vectarget.x, 0, vectarget.z), vectarget);

-

-            Vector3d prograde = new Vector3d();

-            prograde = Quaternion.AngleAxis(90, Vector3d.forward) * vecthis;

-

-            double phase = Vector3d.Angle(vecthis, vectarget);

-

-            if (Vector3d.Angle(prograde, vectarget) > 90) phase = 360 - phase;

-

-            return (phase + 360) % 360;

-        }

-

-		public static double FixAngleDomain(double Angle, bool Degrees = false)

-		{

-			double Extent = 2d * Math.PI;

-			if (Degrees) {

-				Extent = 360d;

-			}

-

-			Angle = Angle % (Extent);

-			if (Angle < 0d)

-			{

-				Angle += Extent;

-			}

-

-			return Angle;

-		}

-

-		public static double FixDegreeDomain(double Angle)

-		{

-			return FixAngleDomain (Angle, true);

-		}

-

-        public static double adjustCurrPhaseAngle(double transfer_angle, double curr_phase)

-        {

-            if (transfer_angle < 0)

-            {

-                if (curr_phase > 0) return (-1 * (360 - curr_phase));

-                else if (curr_phase < 0) return curr_phase;

-            }

-            else if (transfer_angle > 0)

-            {

-                if (curr_phase > 0) return curr_phase;

-                else if (curr_phase < 0) return (360 + curr_phase);

-            }

-            return curr_phase;

-        }

-

-        public static double adjust_current_ejection_angle(double curr_ejection)

-        {

-            //curr_ejection WILL need to be adjusted once for all transfers as it returns values ranging -180 to 180

-            // need 0-360 instead

-            //

-            // ie i have -17 in the screenshot

-            // need it to show 343

-            //

-            // do this

-            //

-            // if < 0, add curr to 360  // 360 + (-17) = 343

-            // else its good as it is

-

-            if (curr_ejection < 0) return 360 + curr_ejection;

-            else return curr_ejection;

-

-        }

-

-        public static double adjust_transfer_ejection_angle(double trans_ejection, double trans_phase)

-        {

-            // if transfer_phase_angle < 0 its a lower transfer

-            //180 + curr_ejection

-            // else if transfer_phase_angle > 0 its good as it is

-

-            if (trans_phase < 0) return 180 + trans_ejection;

-            else return trans_ejection;

-

-        }

-

-        public static double TrueAltitude(Vessel vessel)

-		{

-			double trueAltitude = vessel.orbit.altitude - vessel.terrainAltitude;

-

-			// HACK: This assumes that on worlds with oceans, all water is fixed at 0 m, and water covers the whole surface at 0 m.

-			if (vessel.terrainAltitude < 0 && vessel.mainBody.ocean )

-			{

-				trueAltitude = vessel.orbit.altitude;

-			}

-

-			return trueAltitude;

-		}

-

-		public static string get_heading_text(double heading)

-		{

-			if (heading > 348.75 || heading <= 11.25) return "N";

-			else if (heading > 11.25 && heading <= 33.75) return "NNE";

-			else if (heading > 33.75 && heading <= 56.25) return "NE";

-			else if (heading > 56.25 && heading <= 78.75) return "ENE";

-			else if (heading > 78.75 && heading <= 101.25) return "E";

-			else if (heading > 101.25 && heading <= 123.75) return "ESE";

-			else if (heading > 123.75 && heading <= 146.25) return "SE";

-			else if (heading > 146.25 && heading <= 168.75) return "SSE";

-			else if (heading > 168.75 && heading <= 191.25) return "S";

-			else if (heading > 191.25 && heading <= 213.75) return "SSW";

-			else if (heading > 213.75 && heading <= 236.25) return "SW";

-			else if (heading > 236.25 && heading <= 258.75) return "WSW";

-			else if (heading > 258.75 && heading <= 281.25) return "W";

-			else if (heading > 281.25 && heading <= 303.75) return "WNW";

-			else if (heading > 303.75 && heading <= 326.25) return "NW";

-			else if (heading > 326.25 && heading <= 348.75) return "NNW";

-			else return "";

-		}

-

-		public static double[] ParseXYString(string s)

-		{

-			string[] xy = s.Split (',');

-			if (xy.Length != 2)

-			{

-				throw new ArgumentException ("Argument must be of the format 'x,y'.");

-			}

-

-			double x = double.Parse (xy [0].Trim ());

-			double y = double.Parse (xy [1].Trim ());

-

-			return new double[] { x, y };

-		}

-				

-		private static ScreenMessage debugmsg = new ScreenMessage("", 2f, ScreenMessageStyle.UPPER_RIGHT);

-

-		[System.Diagnostics.Conditional("DEBUG")]

-		public static void PostDebugMessage(string Msg)

-		{

-			if (HighLogic.LoadedScene > GameScenes.SPACECENTER)

-			{

-				debugmsg.message = Msg;

-				ScreenMessages.PostScreenMessage(debugmsg, true);

-			}

-

-			KSPLog.print(Msg);

-		}

-	}

+//
+//  Tools.cs
+//
+//  Author:
+//       toadicus
+//
+//  Copyright (c) 2013 toadicus
+//
+//  This program is free software: you can redistribute it and/or modify
+//  it under the terms of the GNU General Public License as published by
+//  the Free Software Foundation, either version 3 of the License, or
+//  (at your option) any later version.
+//
+//  This program is distributed in the hope that it will be useful,
+//  but WITHOUT ANY WARRANTY; without even the implied warranty of
+//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+//  GNU General Public License for more details.
+//
+//  You should have received a copy of the GNU General Public License
+//  along with this program.  If not, see <http://www.gnu.org/licenses/>.
+//
+//  This software uses VesselSimulator and Engineer.Extensions from Engineer Redux.
+//  Engineer Redux (c) 2013 cybutek
+//  Used by permission.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+using System;
+using System.Collections.Generic;
+using UnityEngine;
+
+namespace VOID
+{
+	public static class VOIDLabels
+	{
+		public static string void_primary = "Primary";
+		public static string void_altitude_asl = "Altitude (ASL)";
+		public static string void_velocity = "Velocity";
+		public static string void_apoapsis = "Apoapsis";
+		public static string void_periapsis = "Periapsis";
+	}
+
+	public static class Tools
+	{
+		// Toadicus edit: Added re-implementation of the CBAttributeMap.GetAtt function that does not fire a debug message to the game screen.
+		public static CBAttributeMap.MapAttribute Toadicus_GetAtt(Vessel vessel)
+		{
+			CBAttributeMap.MapAttribute mapAttribute;
+
+			try
+			{
+				CBAttributeMap BiomeMap = vessel.mainBody.BiomeMap;
+
+				double lat = vessel.latitude * Math.PI / 180d;
+				double lon = vessel.longitude * Math.PI / 180d;
+
+				mapAttribute = BiomeMap.GetAtt(lat, lon);
+
+				/*
+				lon -= Math.PI / 2d;
+
+				if (lon < 0d)
+				{
+					lon += 2d * Math.PI;
+				}
+
+				float v = (float)(lat / Math.PI) + 0.5f;
+				float u = (float)(lon / (2d * Math.PI));
+
+				Color pixelBilinear = BiomeMap.Map.GetPixelBilinear(u, v);
+				mapAttribute = BiomeMap.defaultAttribute;
+
+				if (BiomeMap.Map != null)
+				{
+					if (BiomeMap.exactSearch)
+					{
+						for (int i = 0; i < BiomeMap.Attributes.Length; ++i)
+						{
+							if (pixelBilinear == BiomeMap.Attributes[i].mapColor)
+							{
+								mapAttribute = BiomeMap.Attributes[i];
+							}
+						}
+					}
+					else
+					{
+						float zero = 0;
+						float num = 1 / zero;
+						for (int j = 0; j < BiomeMap.Attributes.Length; ++j)
+						{
+							Color mapColor = BiomeMap.Attributes[j].mapColor;
+							float sqrMagnitude = ((Vector4)(mapColor - pixelBilinear)).sqrMagnitude;
+							if (sqrMagnitude < num)
+							{
+								bool testCase = true;
+								if (BiomeMap.nonExactThreshold != -1)
+								{
+									testCase = (sqrMagnitude < BiomeMap.nonExactThreshold);
+								}
+								if (testCase)
+								{
+									mapAttribute = BiomeMap.Attributes[j];
+									num = sqrMagnitude;
+								}
+							}
+						}
+					}
+				}
+				*/
+			}
+			catch (NullReferenceException)
+			{
+				mapAttribute = new CBAttributeMap.MapAttribute();
+				mapAttribute.name = "N/A";
+			}
+
+			return mapAttribute;
+		}
+
+		public static string GetLongitudeString(Vessel vessel, string format = "F4")
+		{
+			string dir_long = "W";
+			double v_long = vessel.longitude;
+
+			v_long = FixDegreeDomain(v_long);
+
+			if (v_long < -180d)
+			{
+				v_long += 360d;
+			}
+			if (v_long >= 180)
+			{
+				v_long -= 360d;
+			}
+
+			if (v_long > 0)
+				dir_long = "E";
+
+			return string.Format("{0}° {1}", Math.Abs(v_long).ToString(format), dir_long);
+		}
+
+		public static string GetLatitudeString(Vessel vessel, string format = "F4")
+		{
+			string dir_lat = "S";
+			double v_lat = vessel.latitude;
+			if (v_lat > 0)
+				dir_lat = "N";
+
+			return string.Format("{0}° {1}", Math.Abs(v_lat).ToString(format), dir_lat);
+		}
+
+		/*
+		* MuMechLib Methods
+		* The methods below are adapted from MuMechLib, © 2013-2014 r4m0n
+		* The following methods are a derivative work of the code from MuMechLib in the MechJeb project.
+		* Used under license.
+		* */
+
+		// Derived from MechJeb2/VesselState.cs
+		public static Quaternion getSurfaceRotation(this Vessel vessel)
+		{
+			Vector3 CoM;
+
+			try
+			{
+				CoM = vessel.findWorldCenterOfMass();
+			}
+			catch
+			{
+				return new Quaternion();
+			}
+
+			Vector3 bodyPosition = vessel.mainBody.position;
+			Vector3 bodyUp = vessel.mainBody.transform.up;
+
+			Vector3 surfaceUp = (CoM - vessel.mainBody.position).normalized;
+			Vector3 surfaceNorth = Vector3.Exclude(
+				surfaceUp,
+				(bodyPosition + bodyUp * (float)vessel.mainBody.Radius) - CoM
+			).normalized;
+
+			Quaternion surfaceRotation = Quaternion.LookRotation(surfaceNorth, surfaceUp);
+
+			return Quaternion.Inverse(
+				Quaternion.Euler(90, 0, 0) * Quaternion.Inverse(vessel.GetTransform().rotation) * surfaceRotation
+			);
+		}
+
+		// Derived from MechJeb2/VesselState.cs
+		public static double getSurfaceHeading(this Vessel vessel)
+		{
+			return vessel.getSurfaceRotation().eulerAngles.y;
+		}
+
+		// Derived from MechJeb2/VesselState.cs
+		public static double getSurfacePitch(this Vessel vessel)
+		{
+			Quaternion vesselSurfaceRotation = vessel.getSurfaceRotation();
+
+			return (vesselSurfaceRotation.eulerAngles.x > 180f) ?
+				(360f - vesselSurfaceRotation.eulerAngles.x) :
+				-vesselSurfaceRotation.eulerAngles.x;
+		}
+
+		// Derived from MechJeb2/MuUtils.cs
+		public static string MuMech_ToSI(
+			double d, int digits = 3, int MinMagnitude = 0, int MaxMagnitude = int.MaxValue
+		)
+		{
+			float exponent = (float)Math.Log10(Math.Abs(d));
+			exponent = Mathf.Clamp(exponent, (float)MinMagnitude, (float)MaxMagnitude);
+
+			if (exponent >= 0)
+			{
+				switch ((int)Math.Floor(exponent))
+				{
+					case 0:
+					case 1:
+					case 2:
+						return d.ToString("F" + digits);
+					case 3:
+					case 4:
+					case 5:
+						return (d / 1e3).ToString("F" + digits) + "k";
+					case 6:
+					case 7:
+					case 8:
+						return (d / 1e6).ToString("F" + digits) + "M";
+					case 9:
+					case 10:
+					case 11:
+						return (d / 1e9).ToString("F" + digits) + "G";
+					case 12:
+					case 13:
+					case 14:
+						return (d / 1e12).ToString("F" + digits) + "T";
+					case 15:
+					case 16:
+					case 17:
+						return (d / 1e15).ToString("F" + digits) + "P";
+					case 18:
+					case 19:
+					case 20:
+						return (d / 1e18).ToString("F" + digits) + "E";
+					case 21:
+					case 22:
+					case 23:
+						return (d / 1e21).ToString("F" + digits) + "Z";
+					default:
+						return (d / 1e24).ToString("F" + digits) + "Y";
+				}
+			}
+			else if (exponent < 0)
+			{
+				switch ((int)Math.Floor(exponent))
+				{
+					case -1:
+					case -2:
+					case -3:
+						return (d * 1e3).ToString("F" + digits) + "m";
+					case -4:
+					case -5:
+					case -6:
+						return (d * 1e6).ToString("F" + digits) + "μ";
+					case -7:
+					case -8:
+					case -9:
+						return (d * 1e9).ToString("F" + digits) + "n";
+					case -10:
+					case -11:
+					case -12:
+						return (d * 1e12).ToString("F" + digits) + "p";
+					case -13:
+					case -14:
+					case -15:
+						return (d * 1e15).ToString("F" + digits) + "f";
+					case -16:
+					case -17:
+					case -18:
+						return (d * 1e18).ToString("F" + digits) + "a";
+					case -19:
+					case -20:
+					case -21:
+						return (d * 1e21).ToString("F" + digits) + "z";
+					default:
+						return (d * 1e24).ToString("F" + digits) + "y";
+				}
+			}
+			else
+			{
+				return "0";
+			}
+		}
+
+		/*
+		 * END MuMecLib METHODS
+		 * */
+
+		public static string ConvertInterval(double seconds)
+		{
+			string format_1 = "{0:D1}y {1:D1}d {2:D2}h {3:D2}m {4:D2}.{5:D1}s";
+			string format_2 = "{0:D1}d {1:D2}h {2:D2}m {3:D2}.{4:D1}s";
+			string format_3 = "{0:D2}h {1:D2}m {2:D2}.{3:D1}s";
+
+			TimeSpan interval;
+
+			try
+			{
+				interval = TimeSpan.FromSeconds(seconds);
+			}
+			catch (OverflowException)
+			{
+				return "NaN";
+			}
+
+			int years = interval.Days / 365;
+
+			string output;
+			if (years > 0)
+			{
+				output = string.Format(format_1,
+					years,
+					interval.Days - (years * 365), //  subtract years * 365 for accurate day count
+					interval.Hours,
+					interval.Minutes,
+					interval.Seconds,
+					interval.Milliseconds.ToString().Substring(0, 1));
+			}
+			else if (interval.Days > 0)
+			{
+				output = string.Format(format_2,
+					interval.Days,
+					interval.Hours,
+					interval.Minutes,
+					interval.Seconds,
+					interval.Milliseconds.ToString().Substring(0, 1));
+			}
+			else
+			{
+				output = string.Format(format_3,
+					interval.Hours,
+					interval.Minutes,
+					interval.Seconds,
+					interval.Milliseconds.ToString().Substring(0, 1));
+			}
+			return output;
+		}
+
+		public static string UppercaseFirst(string s)
+		{
+			if (string.IsNullOrEmpty(s))
+			{
+				return string.Empty;
+			}
+			char[] a = s.ToCharArray();
+			a[0] = char.ToUpper(a[0]);
+			return new string(a);
+		}
+		//transfer angles
+		public static double Nivvy_CalcTransferPhaseAngle(double r_current, double r_target, double grav_param)
+		{
+			double T_target = (2 * Math.PI) * Math.Sqrt(Math.Pow((r_target / 1000), 3) / (grav_param / 1000000000));
+			double T_transfer = (2 * Math.PI) * Math.Sqrt(Math.Pow((((r_target / 1000) + (r_current / 1000)) / 2), 3) / (grav_param / 1000000000));
+			return 360 * (0.5 - (T_transfer / (2 * T_target)));
+		}
+
+		public static double Younata_DeltaVToGetToOtherBody(double mu, double r1, double r2)
+		{
+			/*			
+            def deltaVToGetToOtherBody(mu, r1, r2):
+            # mu = gravity param of common orbiting body of r1 and r2
+            # (e.g. for mun to minmus, mu is kerbin's gravity param
+            # r1 = initial body's orbit radius
+            # r2 = target body's orbit radius
+		
+            # return value is km/s
+            sur1 = math.sqrt(mu / r1)
+            sr1r2 = math.sqrt(float(2*r2)/float(r1+r2))
+            mult = sr1r2 - 1
+            return sur1 * mult
+            */
+			double sur1, sr1r2, mult;
+			sur1 = Math.Sqrt(mu / r1);
+			sr1r2 = Math.Sqrt((2 * r2) / (r1 + r2));
+			mult = sr1r2 - 1;
+			return sur1 * mult;
+		}
+
+		public static double Younata_DeltaVToExitSOI(double mu, double r1, double r2, double v)
+		{
+			/*			
+            def deltaVToExitSOI(mu, r1, r2, v):
+            # mu = gravity param of current body
+            # r1 = current orbit radius
+            # r2 = SOI radius
+            # v = SOI exit velocity
+            foo = r2 * (v**2) - 2 * mu
+            bar = r1 * foo + (2 * r2 * mu)
+            r = r1*r2
+            return math.sqrt(bar / r)
+            */
+			double foo = r2 * Math.Pow(v, 2) - 2 * mu;
+			double bar = r1 * foo + (2 * r2 * mu);
+			double r = r1 * r2;
+			return Math.Sqrt(bar / r);
+		}
+
+		public static double Younata_TransferBurnPoint(double r, double v, double angle, double mu)
+		{
+			/*			
+            def transferBurnPoint(r, v, angle, mu):
+            # r = parking orbit radius
+            # v = ejection velocity
+            # angle = phase angle (from function phaseAngle())
+            # mu = gravity param of current body.
+            epsilon = ((v**2)/2) - (mu / r)
+            h = r * v * math.sin(angle)
+            e = math.sqrt(1 + ((2 * epsilon * h**2)/(mu**2)))
+            theta = math.acos(1.0 / e)
+            degrees = theta * (180.0 / math.pi)
+            return 180 - degrees
+            */
+			double epsilon, h, ee, theta, degrees;
+			epsilon = (Math.Pow(v, 2) / 2) - (mu / r);
+			h = r * v * Math.Sin(angle);
+			ee = Math.Sqrt(1 + ((2 * epsilon * Math.Pow(h, 2)) / Math.Pow(mu, 2)));
+			theta = Math.Acos(1.0 / ee);
+			degrees = theta * (180.0 / Math.PI);
+			return 180 - degrees;
+			// returns the ejection angle
+		}
+
+		public static double Adammada_CurrrentPhaseAngle(
+			double body_LAN,
+			double body_orbitPct,
+			double origin_LAN,
+			double origin_orbitPct
+		)
+		{
+			double angle = (body_LAN / 360 + body_orbitPct) - (origin_LAN / 360 + origin_orbitPct);
+			if (angle > 1)
+				angle = angle - 1;
+			if (angle < 0)
+				angle = angle + 1;
+			if (angle > 0.5)
+				angle = angle - 1;
+			angle = angle * 360;
+			return angle;
+		}
+
+		public static double Adammada_CurrentEjectionAngle(
+			double vessel_long,
+			double origin_rotAngle,
+			double origin_LAN,
+			double origin_orbitPct
+		)
+		{
+			//double eangle = ((FlightGlobals.ActiveVOID.vessel.longitude + orbiting.rotationAngle) - (orbiting.orbit.LAN / 360 + orbiting.orbit.orbitPercent) * 360);
+			double eangle = ((vessel_long + origin_rotAngle) - (origin_LAN / 360 + origin_orbitPct) * 360);
+
+			while (eangle < 0)
+				eangle = eangle + 360;
+			while (eangle > 360)
+				eangle = eangle - 360;
+			if (eangle < 270)
+				eangle = 90 - eangle;
+			else
+				eangle = 450 - eangle;
+			return eangle;
+		}
+
+		public static double mrenigma03_calcphase(Vessel vessel, CelestialBody target)   //calculates phase angle between the current body and target body
+		{
+			Vector3d vecthis = new Vector3d();
+			Vector3d vectarget = new Vector3d();
+			vectarget = target.orbit.getRelativePositionAtUT(Planetarium.GetUniversalTime());
+
+			if ((vessel.mainBody.name == "Sun") || (vessel.mainBody.referenceBody.referenceBody.name == "Sun"))
+			{
+				vecthis = vessel.orbit.getRelativePositionAtUT(Planetarium.GetUniversalTime());
+			}
+			else
+			{
+				vecthis = vessel.mainBody.orbit.getRelativePositionAtUT(Planetarium.GetUniversalTime());
+			}
+
+			vecthis = Vector3d.Project(new Vector3d(vecthis.x, 0, vecthis.z), vecthis);
+			vectarget = Vector3d.Project(new Vector3d(vectarget.x, 0, vectarget.z), vectarget);
+
+			Vector3d prograde = new Vector3d();
+			prograde = Quaternion.AngleAxis(90, Vector3d.forward) * vecthis;
+
+			double phase = Vector3d.Angle(vecthis, vectarget);
+
+			if (Vector3d.Angle(prograde, vectarget) > 90)
+				phase = 360 - phase;
+
+			return (phase + 360) % 360;
+		}
+
+		public static double FixAngleDomain(double Angle, bool Degrees = false)
+		{
+			double Extent = 2d * Math.PI;
+			if (Degrees)
+			{
+				Extent = 360d;
+			}
+
+			Angle = Angle % (Extent);
+			if (Angle < 0d)
+			{
+				Angle += Extent;
+			}
+
+			return Angle;
+		}
+
+		public static double FixDegreeDomain(double Angle)
+		{
+			return FixAngleDomain(Angle, true);
+		}
+
+		public static double adjustCurrPhaseAngle(double transfer_angle, double curr_phase)
+		{
+			if (transfer_angle < 0)
+			{
+				if (curr_phase > 0)
+					return (-1 * (360 - curr_phase));
+				else if (curr_phase < 0)
+					return curr_phase;
+			}
+			else if (transfer_angle > 0)
+			{
+				if (curr_phase > 0)
+					return curr_phase;
+				else if (curr_phase < 0)
+					return (360 + curr_phase);
+			}
+			return curr_phase;
+		}
+
+		public static double adjust_current_ejection_angle(double curr_ejection)
+		{
+			//curr_ejection WILL need to be adjusted once for all transfers as it returns values ranging -180 to 180
+			// need 0-360 instead
+			//
+			// ie i have -17 in the screenshot
+			// need it to show 343
+			//
+			// do this
+			//
+			// if < 0, add curr to 360  // 360 + (-17) = 343
+			// else its good as it is
+
+			if (curr_ejection < 0)
+				return 360 + curr_ejection;
+			else
+				return curr_ejection;
+
+		}
+
+		public static double adjust_transfer_ejection_angle(double trans_ejection, double trans_phase)
+		{
+			// if transfer_phase_angle < 0 its a lower transfer
+			//180 + curr_ejection
+			// else if transfer_phase_angle > 0 its good as it is
+
+			if (trans_phase < 0)
+				return 180 + trans_ejection;
+			else
+				return trans_ejection;
+
+		}
+
+		public static double TrueAltitude(Vessel vessel)
+		{
+			double trueAltitude = vessel.orbit.altitude - vessel.terrainAltitude;
+
+			// HACK: This assumes that on worlds with oceans, all water is fixed at 0 m,
+			// and water covers the whole surface at 0 m.
+			if (vessel.terrainAltitude < 0 && vessel.mainBody.ocean)
+			{
+				trueAltitude = vessel.orbit.altitude;
+			}
+
+			return trueAltitude;
+		}
+
+		public static string get_heading_text(double heading)
+		{
+			if (heading > 348.75 || heading <= 11.25)
+				return "N";
+			else if (heading > 11.25 && heading <= 33.75)
+				return "NNE";
+			else if (heading > 33.75 && heading <= 56.25)
+				return "NE";
+			else if (heading > 56.25 && heading <= 78.75)
+				return "ENE";
+			else if (heading > 78.75 && heading <= 101.25)
+				return "E";
+			else if (heading > 101.25 && heading <= 123.75)
+				return "ESE";
+			else if (heading > 123.75 && heading <= 146.25)
+				return "SE";
+			else if (heading > 146.25 && heading <= 168.75)
+				return "SSE";
+			else if (heading > 168.75 && heading <= 191.25)
+				return "S";
+			else if (heading > 191.25 && heading <= 213.75)
+				return "SSW";
+			else if (heading > 213.75 && heading <= 236.25)
+				return "SW";
+			else if (heading > 236.25 && heading <= 258.75)
+				return "WSW";
+			else if (heading > 258.75 && heading <= 281.25)
+				return "W";
+			else if (heading > 281.25 && heading <= 303.75)
+				return "WNW";
+			else if (heading > 303.75 && heading <= 326.25)
+				return "NW";
+			else if (heading > 326.25 && heading <= 348.75)
+				return "NNW";
+			else
+				return "";
+		}
+
+		public static void display_transfer_angles_SUN2PLANET(CelestialBody body, Vessel vessel)
+		{
+			GUILayout.BeginHorizontal(GUILayout.ExpandWidth(true));
+			GUILayout.Label("Phase angle (curr/trans):");
+			GUILayout.Label(
+				Tools.mrenigma03_calcphase(vessel, body).ToString("F3") + "° / " + Tools.Nivvy_CalcTransferPhaseAngle(
+					vessel.orbit.semiMajorAxis,
+					body.orbit.semiMajorAxis,
+					vessel.mainBody.gravParameter
+				).ToString("F3") + "°",
+				GUILayout.ExpandWidth(false)
+			);
+			GUILayout.EndHorizontal();
+
+			GUILayout.BeginHorizontal(GUILayout.ExpandWidth(true));
+			GUILayout.Label("Transfer velocity:");
+			GUILayout.Label(
+				(Tools.Younata_DeltaVToGetToOtherBody(
+					(vessel.mainBody.gravParameter / 1000000000),
+					(vessel.orbit.semiMajorAxis / 1000),
+					(body.orbit.semiMajorAxis / 1000)
+				) * 1000).ToString("F2") + "m/s",
+				GUILayout.ExpandWidth(false)
+			);
+			GUILayout.EndHorizontal();
+		}
+
+		public static void display_transfer_angles_PLANET2PLANET(CelestialBody body, Vessel vessel)
+		{
+			double dv1 = Tools.Younata_DeltaVToGetToOtherBody(
+				             (vessel.mainBody.referenceBody.gravParameter / 1000000000),
+				             (vessel.mainBody.orbit.semiMajorAxis / 1000),
+				             (body.orbit.semiMajorAxis / 1000)
+			             );
+			double dv2 = Tools.Younata_DeltaVToExitSOI(
+				             (vessel.mainBody.gravParameter / 1000000000),
+				             (vessel.orbit.semiMajorAxis / 1000),
+				             (vessel.mainBody.sphereOfInfluence / 1000),
+				             Math.Abs(dv1)
+			             );
+
+			double trans_ejection_angle = Tools.Younata_TransferBurnPoint(
+				                              (vessel.orbit.semiMajorAxis / 1000),
+				                              dv2,
+				                              (Math.PI / 2.0),
+				                              (vessel.mainBody.gravParameter / 1000000000)
+			                              );
+			double curr_ejection_angle = Tools.Adammada_CurrentEjectionAngle(
+				                             FlightGlobals.ActiveVessel.longitude,
+				                             FlightGlobals.ActiveVessel.orbit.referenceBody.rotationAngle,
+				                             FlightGlobals.ActiveVessel.orbit.referenceBody.orbit.LAN,
+				                             FlightGlobals.ActiveVessel.orbit.referenceBody.orbit.orbitPercent
+			                             );
+
+			double trans_phase_angle = Tools.Nivvy_CalcTransferPhaseAngle(
+				                           vessel.mainBody.orbit.semiMajorAxis,
+				                           body.orbit.semiMajorAxis,
+				                           vessel.mainBody.referenceBody.gravParameter
+			                           ) % 360;
+			double curr_phase_angle = Tools.Adammada_CurrrentPhaseAngle(
+				                          body.orbit.LAN,
+				                          body.orbit.orbitPercent,
+				                          FlightGlobals.ActiveVessel.orbit.referenceBody.orbit.LAN,
+				                          FlightGlobals.ActiveVessel.orbit.referenceBody.orbit.orbitPercent
+			                          );
+
+			double adj_phase_angle = Tools.adjustCurrPhaseAngle(trans_phase_angle, curr_phase_angle);
+			double adj_trans_ejection_angle = Tools.adjust_transfer_ejection_angle(trans_ejection_angle, trans_phase_angle);
+			double adj_curr_ejection_angle = Tools.adjust_current_ejection_angle(curr_ejection_angle);
+
+			GUILayout.BeginHorizontal(GUILayout.ExpandWidth(true));
+			GUILayout.Label("Phase angle (curr/trans):");
+			GUILayout.Label(
+				adj_phase_angle.ToString("F3") + "° / " + trans_phase_angle.ToString("F3") + "°",
+				GUILayout.ExpandWidth(false)
+			);
+			GUILayout.EndHorizontal();
+
+			GUILayout.BeginHorizontal(GUILayout.ExpandWidth(true));
+			GUILayout.Label("Ejection angle (curr/trans):");
+			GUILayout.Label(
+				adj_curr_ejection_angle.ToString("F3") + "° / " + adj_trans_ejection_angle.ToString("F3") + "°",
+				GUILayout.ExpandWidth(false)
+			);
+			GUILayout.EndHorizontal();
+
+			GUILayout.BeginHorizontal(GUILayout.ExpandWidth(true));
+			GUILayout.Label("Transfer velocity:");
+			GUILayout.Label((dv2 * 1000).ToString("F2") + "m/s", GUILayout.ExpandWidth(false));
+			GUILayout.EndHorizontal();
+		}
+
+		public static void display_transfer_angles_PLANET2MOON(CelestialBody body, Vessel vessel)
+		{
+			double dv1 = Tools.Younata_DeltaVToGetToOtherBody(
+				             (vessel.mainBody.gravParameter / 1000000000),
+				             (vessel.orbit.semiMajorAxis / 1000),
+				             (body.orbit.semiMajorAxis / 1000)
+			             );
+
+			double trans_phase_angle = Tools.Nivvy_CalcTransferPhaseAngle(
+				                           vessel.orbit.semiMajorAxis,
+				                           body.orbit.semiMajorAxis,
+				                           vessel.mainBody.gravParameter
+			                           );
+
+			GUILayout.BeginHorizontal(GUILayout.ExpandWidth(true));
+			GUILayout.Label("Phase angle (curr/trans):");
+			GUILayout.Label(
+				Tools.mrenigma03_calcphase(vessel, body).ToString("F3") + "° / " + trans_phase_angle.ToString("F3") + "°",
+				GUILayout.ExpandWidth(false)
+			);
+			GUILayout.EndHorizontal();
+
+			GUILayout.BeginHorizontal(GUILayout.ExpandWidth(true));
+			GUILayout.Label("Transfer velocity:");
+			GUILayout.Label((dv1 * 1000).ToString("F2") + "m/s", GUILayout.ExpandWidth(false));
+			GUILayout.EndHorizontal();
+		}
+
+		public static void display_transfer_angles_MOON2MOON(CelestialBody body, Vessel vessel)
+		{
+			double dv1 = Tools.Younata_DeltaVToGetToOtherBody(
+				             (vessel.mainBody.referenceBody.gravParameter / 1000000000),
+				             (vessel.mainBody.orbit.semiMajorAxis / 1000),
+				             (body.orbit.semiMajorAxis / 1000)
+			             );
+			double dv2 = Tools.Younata_DeltaVToExitSOI(
+				             (vessel.mainBody.gravParameter / 1000000000),
+				             (vessel.orbit.semiMajorAxis / 1000),
+				             (vessel.mainBody.sphereOfInfluence / 1000),
+				             Math.Abs(dv1)
+			             );
+			double trans_ejection_angle = Tools.Younata_TransferBurnPoint(
+				                              (vessel.orbit.semiMajorAxis / 1000),
+				                              dv2,
+				                              (Math.PI / 2.0),
+				                              (vessel.mainBody.gravParameter / 1000000000)
+			                              );
+
+			double curr_phase_angle = Tools.Adammada_CurrrentPhaseAngle(
+				                          body.orbit.LAN,
+				                          body.orbit.orbitPercent,
+				                          FlightGlobals.ActiveVessel.orbit.referenceBody.orbit.LAN,
+				                          FlightGlobals.ActiveVessel.orbit.referenceBody.orbit.orbitPercent
+			                          );
+			double curr_ejection_angle = Tools.Adammada_CurrentEjectionAngle(
+				                             FlightGlobals.ActiveVessel.longitude,
+				                             FlightGlobals.ActiveVessel.orbit.referenceBody.rotationAngle,
+				                             FlightGlobals.ActiveVessel.orbit.referenceBody.orbit.LAN,
+				                             FlightGlobals.ActiveVessel.orbit.referenceBody.orbit.orbitPercent
+			                             );
+
+			double trans_phase_angle = Tools.Nivvy_CalcTransferPhaseAngle(
+				                           vessel.mainBody.orbit.semiMajorAxis,
+				                           body.orbit.semiMajorAxis,
+				                           vessel.mainBody.referenceBody.gravParameter
+			                           ) % 360;
+
+			double adj_phase_angle = Tools.adjustCurrPhaseAngle(trans_phase_angle, curr_phase_angle);
+			//double adj_ejection_angle = adjustCurrEjectionAngle(trans_phase_angle, curr_ejection_angle);
+
+			//new stuff
+			//
+			double adj_trans_ejection_angle = Tools.adjust_transfer_ejection_angle(trans_ejection_angle, trans_phase_angle);
+			double adj_curr_ejection_angle = Tools.adjust_current_ejection_angle(curr_ejection_angle);
+			//
+			//
+
+			GUILayout.BeginHorizontal(GUILayout.ExpandWidth(true));
+			GUILayout.Label("Phase angle (curr/trans):");
+			GUILayout.Label(
+				adj_phase_angle.ToString("F3") + "° / " + trans_phase_angle.ToString("F3") + "°",
+				GUILayout.ExpandWidth(false)
+			);
+			GUILayout.EndHorizontal();
+
+			GUILayout.BeginHorizontal(GUILayout.ExpandWidth(true));
+			GUILayout.Label("Ejection angle (curr/trans):");
+			GUILayout.Label(
+				adj_curr_ejection_angle.ToString("F3") + "° / " + adj_trans_ejection_angle.ToString("F3") + "°",
+				GUILayout.ExpandWidth(false)
+			);
+			GUILayout.EndHorizontal();
+
+			GUILayout.BeginHorizontal(GUILayout.ExpandWidth(true));
+			GUILayout.Label("Transfer velocity:");
+			GUILayout.Label((dv2 * 1000).ToString("F2") + "m/s", GUILayout.ExpandWidth(false));
+			GUILayout.EndHorizontal();
+		}
+		// This implementation is adapted from FARGUIUtils.ClampToScreen
+		public static Rect ClampRectToScreen(Rect window, int xMargin, int yMargin)
+		{
+			window.x = Mathf.Clamp(window.x, xMargin - window.width, Screen.width - xMargin);
+			window.y = Mathf.Clamp(window.y, yMargin - window.height, Screen.height - yMargin);
+
+			return window;
+		}
+
+		public static Rect ClampRectToScreen(Rect window, int Margin)
+		{
+			return ClampRectToScreen(window, Margin, Margin);
+		}
+
+		public static Rect ClampRectToScreen(Rect window)
+		{
+			return ClampRectToScreen(window, 30);
+		}
+
+		public static Vector2 ClampV2ToScreen(Vector2 vec, uint xMargin, uint yMargin)
+		{
+			vec.x = Mathf.Clamp(vec.x, xMargin, Screen.width - xMargin);
+			vec.y = Mathf.Clamp(vec.y, yMargin, Screen.height - yMargin);
+
+			return vec;
+		}
+
+		public static Vector2 ClampV2ToScreen(Vector2 vec, uint Margin)
+		{
+			return ClampV2ToScreen(vec, Margin, Margin);
+		}
+
+		public static Vector2 ClampV2ToScreen(Vector2 vec)
+		{
+			return ClampV2ToScreen(vec, 15);
+		}
+		// UNDONE: This seems messy.  Can we clean it up?
+		public static Rect DockToWindow(Rect icon, Rect window)
+		{
+			// We can't set the x and y of the center point directly, so build a new vector.
+			Vector2 center = new Vector2();
+
+			// If we are near the top or bottom of the screen...
+			if (window.yMax > Screen.height - icon.height ||
+			    window.yMin < icon.height)
+			{
+				// If we are in a corner...
+				if (window.xMax > Screen.width - icon.width ||
+				    window.xMin < icon.width)
+				{
+					// If it is a top corner, put the icon below the window.
+					if (window.yMax < Screen.height / 2)
+					{
+						center.y = window.yMax + icon.height / 2;
+					}
+					// If it is a bottom corner, put the icon above the window.
+					else
+					{
+						center.y = window.yMin - icon.height / 2;
+					}
+				}
+				// If we are not in a corner...
+				else
+				{
+					// If we are along the top edge, align the icon's top edge with the top edge of the window
+					if (window.yMax > Screen.height / 2)
+					{
+						center.y = window.yMax - icon.height / 2;
+					}
+					// If we are along the bottom edge, align the icon's bottom edge with the bottom edge of the window
+					else
+					{
+						center.y = window.yMin + icon.height / 2;
+					}
+				}
+
+				// At the top or bottom, if we are towards the right, put the icon to the right of the window
+				if (window.center.x < Screen.width / 2)
+				{
+					center.x = window.xMin - icon.width / 2;
+				}
+				// At the top or bottom, if we are towards the left, put the icon to the left of the window
+				else
+				{
+					center.x = window.xMax + icon.width / 2;
+				}
+
+			}
+			// If we are not along the top or bottom of the screen...
+			else
+			{
+				// By default, center the icon above the window
+				center.y = window.yMin - icon.height / 2;
+				center.x = window.center.x;
+
+				// If we are along a side...
+				if (window.xMax > Screen.width - icon.width ||
+				    window.xMin < icon.width)
+				{
+					// UNDONE: I'm not sure I like the feel of this part.
+					// If we are along a side towards the bottom, put the icon below the window
+					if (window.center.y > Screen.height / 2)
+					{
+						center.y = window.yMax + icon.height / 2;
+					}
+
+					// Along the left side, align the left edge of the icon with the left edge of the window.
+					if (window.xMax > Screen.width - icon.width)
+					{
+						center.x = window.xMax - icon.width / 2;
+					}
+					// Along the right side, align the right edge of the icon with the right edge of the window.
+					else if (window.xMin < icon.width)
+					{
+						center.x = window.xMin + icon.width / 2;
+					}
+				}
+			}
+
+			// Assign the vector to the center of the rect.
+			icon.center = center;
+
+			// Return the icon's position.
+			return icon;
+		}
+
+		public static ExperimentSituations GetExperimentSituation(this Vessel vessel)
+		{
+			Vessel.Situations situation = vessel.situation;
+
+			switch (situation)
+			{
+				case Vessel.Situations.PRELAUNCH:
+				case Vessel.Situations.LANDED:
+					return ExperimentSituations.SrfLanded;
+				case Vessel.Situations.SPLASHED:
+					return ExperimentSituations.SrfSplashed;
+				case Vessel.Situations.FLYING:
+					if (vessel.altitude < (double)vessel.mainBody.scienceValues.flyingAltitudeThreshold)
+					{
+						return ExperimentSituations.FlyingLow;
+					}
+					else
+					{
+						return ExperimentSituations.FlyingHigh;
+					}
+			}
+
+			if (vessel.altitude < (double)vessel.mainBody.scienceValues.spaceAltitudeThreshold)
+			{
+				return ExperimentSituations.InSpaceLow;
+			}
+			else
+			{
+				return ExperimentSituations.InSpaceHigh;
+			}
+		}
+
+		public static double Radius(this Vessel vessel)
+		{
+			double radius;
+
+			radius = vessel.altitude;
+
+			if (vessel.mainBody != null)
+			{
+				radius += vessel.mainBody.Radius;
+			}
+
+			return radius;
+		}
+
+		public static double TryGetLastMass(this Engineer.VesselSimulator.SimManager simManager)
+		{
+			if (simManager.Stages == null || simManager.Stages.Length <= Staging.lastStage)
+			{
+				return double.NaN;
+			}
+
+			return simManager.Stages[Staging.lastStage].totalMass;
+		}
+
+		public static string HumanString(this ExperimentSituations situation)
+		{
+			switch (situation)
+			{
+				case ExperimentSituations.FlyingHigh:
+					return "Upper Atmosphere";
+				case ExperimentSituations.FlyingLow:
+					return "Flying";
+				case ExperimentSituations.SrfLanded:
+					return "Surface";
+				case ExperimentSituations.InSpaceLow:
+					return "Near in Space";
+				case ExperimentSituations.InSpaceHigh:
+					return "High in Space";
+				case ExperimentSituations.SrfSplashed:
+					return "Splashed Down";
+				default:
+					return "Unknown";
+			}
+		}
+
+		private static ScreenMessage debugmsg = new ScreenMessage("", 2f, ScreenMessageStyle.UPPER_RIGHT);
+
+		[System.Diagnostics.Conditional("DEBUG")]
+		public static void PostDebugMessage(string Msg)
+		{
+			if (HighLogic.LoadedScene > GameScenes.SPACECENTER)
+			{
+				debugmsg.message = Msg;
+				ScreenMessages.PostScreenMessage(debugmsg, true);
+			}
+
+			KSPLog.print(Msg);
+		}
+	}
 }