AntennaRelay.cs: Changed reference tracking to an IAntennaRelay module, now fetching vessel thence, to avoid stale vessel references. Removed the IAntennaRelay IComparer.
AntennaRelay.cs: Changed reference tracking to an IAntennaRelay module, now fetching vessel thence, to avoid stale vessel references. Removed the IAntennaRelay IComparer.

file:a/ARTools.cs -> file:b/ARTools.cs
// AntennaRange © 2014 toadicus // AntennaRange © 2014 toadicus
// //
// AntennaRange provides incentive and requirements for the use of the various antenna parts. // AntennaRange provides incentive and requirements for the use of the various antenna parts.
// Nominally, the breakdown is as follows: // Nominally, the breakdown is as follows:
// //
// Communotron 16 - Suitable up to Kerbalsynchronous Orbit // Communotron 16 - Suitable up to Kerbalsynchronous Orbit
// Comms DTS-M1 - Suitable throughout the Kerbin subsystem // Comms DTS-M1 - Suitable throughout the Kerbin subsystem
// Communotron 88-88 - Suitable throughout the Kerbol system. // Communotron 88-88 - Suitable throughout the Kerbol system.
// //
// This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a // This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a
// copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ // copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
// //
// This software uses the ModuleManager library © 2013 ialdabaoth, used under a Creative Commons Attribution-ShareAlike // This software uses the ModuleManager library © 2013 ialdabaoth, used under a Creative Commons Attribution-ShareAlike
// 3.0 Uported License. // 3.0 Uported License.
// //
// This software uses code from the MuMechLib library, © 2013 r4m0n, used under the GNU GPL version 3. // This software uses code from the MuMechLib library, © 2013 r4m0n, used under the GNU GPL version 3.
   
using System; using System;
   
namespace AntennaRange namespace AntennaRange
{ {
public static class Tools public static class Tools
{ {
private static ScreenMessage debugmsg = new ScreenMessage("", 2f, ScreenMessageStyle.UPPER_RIGHT); private static ScreenMessage debugmsg = new ScreenMessage("", 2f, ScreenMessageStyle.UPPER_RIGHT);
// Function that posts messages to the screen and the log when DEBUG is defined. // Function that posts messages to the screen and the log when DEBUG is defined.
[System.Diagnostics.Conditional("DEBUG")] [System.Diagnostics.Conditional("DEBUG")]
public static void PostDebugMessage(string Msg) public static void PostDebugMessage(string Msg)
{ {
if (HighLogic.LoadedScene > GameScenes.SPACECENTER) if (HighLogic.LoadedScene > GameScenes.SPACECENTER)
{ {
debugmsg.message = Msg; debugmsg.message = Msg;
ScreenMessages.PostScreenMessage(debugmsg, true); ScreenMessages.PostScreenMessage(debugmsg, true);
} }
   
KSPLog.print(Msg); KSPLog.print(Msg);
} }
   
/* /*
* MuMech_ToSI is a part of the MuMechLib library, © 2013 r4m0n, used under the GNU GPL version 3. * MuMech_ToSI is a part of the MuMechLib library, © 2013 r4m0n, used under the GNU GPL version 3.
* */ * */
public static string MuMech_ToSI(double d, int digits = 3, int MinMagnitude = 0, int MaxMagnitude = int.MaxValue) public static string MuMech_ToSI(double d, int digits = 3, int MinMagnitude = 0, int MaxMagnitude = int.MaxValue)
{ {
float exponent = (float)Math.Log10(Math.Abs(d)); float exponent = (float)Math.Log10(Math.Abs(d));
exponent = UnityEngine.Mathf.Clamp(exponent, (float)MinMagnitude, (float)MaxMagnitude); exponent = UnityEngine.Mathf.Clamp(exponent, (float)MinMagnitude, (float)MaxMagnitude);
   
if (exponent >= 0) if (exponent >= 0)
{ {
switch ((int)Math.Floor(exponent)) switch ((int)Math.Floor(exponent))
{ {
case 0: case 0:
case 1: case 1:
case 2: case 2:
return d.ToString("F" + digits); return d.ToString("F" + digits);
case 3: case 3:
case 4: case 4:
case 5: case 5:
return (d / 1e3).ToString("F" + digits) + "k"; return (d / 1e3).ToString("F" + digits) + "k";
case 6: case 6:
case 7: case 7:
case 8: case 8:
return (d / 1e6).ToString("F" + digits) + "M"; return (d / 1e6).ToString("F" + digits) + "M";
case 9: case 9:
case 10: case 10:
case 11: case 11:
return (d / 1e9).ToString("F" + digits) + "G"; return (d / 1e9).ToString("F" + digits) + "G";
case 12: case 12:
case 13: case 13:
case 14: case 14:
return (d / 1e12).ToString("F" + digits) + "T"; return (d / 1e12).ToString("F" + digits) + "T";
case 15: case 15:
case 16: case 16:
case 17: case 17:
return (d / 1e15).ToString("F" + digits) + "P"; return (d / 1e15).ToString("F" + digits) + "P";
case 18: case 18:
case 19: case 19:
case 20: case 20:
return (d / 1e18).ToString("F" + digits) + "E"; return (d / 1e18).ToString("F" + digits) + "E";
case 21: case 21:
case 22: case 22:
case 23: case 23:
return (d / 1e21).ToString("F" + digits) + "Z"; return (d / 1e21).ToString("F" + digits) + "Z";
default: default:
return (d / 1e24).ToString("F" + digits) + "Y"; return (d / 1e24).ToString("F" + digits) + "Y";
} }
} }
else if (exponent < 0) else if (exponent < 0)
{ {
switch ((int)Math.Floor(exponent)) switch ((int)Math.Floor(exponent))
{ {
case -1: case -1:
case -2: case -2:
case -3: case -3:
return (d * 1e3).ToString("F" + digits) + "m"; return (d * 1e3).ToString("F" + digits) + "m";
case -4: case -4:
case -5: case -5:
case -6: case -6:
return (d * 1e6).ToString("F" + digits) + "μ"; return (d * 1e6).ToString("F" + digits) + "μ";
case -7: case -7:
case -8: case -8:
case -9: case -9:
return (d * 1e9).ToString("F" + digits) + "n"; return (d * 1e9).ToString("F" + digits) + "n";
case -10: case -10:
case -11: case -11:
case -12: case -12:
return (d * 1e12).ToString("F" + digits) + "p"; return (d * 1e12).ToString("F" + digits) + "p";
case -13: case -13:
case -14: case -14:
case -15: case -15:
return (d * 1e15).ToString("F" + digits) + "f"; return (d * 1e15).ToString("F" + digits) + "f";
case -16: case -16:
case -17: case -17:
case -18: case -18:
return (d * 1e18).ToString("F" + digits) + "a"; return (d * 1e18).ToString("F" + digits) + "a";
case -19: case -19:
case -20: case -20:
case -21: case -21:
return (d * 1e21).ToString("F" + digits) + "z"; return (d * 1e21).ToString("F" + digits) + "z";
default: default:
return (d * 1e24).ToString("F" + digits) + "y"; return (d * 1e24).ToString("F" + digits) + "y";
} }
} }
else else
{ {
return "0"; return "0";
} }
} }
   
  public static T Min<T>(params T[] values) where T : IComparable<T>
  {
  if (values.Length < 2)
  {
  throw new ArgumentException("Min must be called with at least two arguments.");
  }
   
  IComparable<T> minValue = values[0];
   
  for (long i = 1; i < values.LongLength; i++)
  {
  IComparable<T> value = values[i];
   
  if (value.CompareTo((T)minValue) < 0)
  {
  minValue = value;
  }
  }
   
  return (T)minValue;
  }
   
  public static void Restart(this System.Diagnostics.Stopwatch stopwatch)
  {
  stopwatch.Reset();
  stopwatch.Start();
  }
} }
} }
   
   
// AntennaRange © 2014 toadicus // AntennaRange © 2014 toadicus
// //
// AntennaRange provides incentive and requirements for the use of the various antenna parts. // AntennaRange provides incentive and requirements for the use of the various antenna parts.
// Nominally, the breakdown is as follows: // Nominally, the breakdown is as follows:
// //
// Communotron 16 - Suitable up to Kerbalsynchronous Orbit // Communotron 16 - Suitable up to Kerbalsynchronous Orbit
// Comms DTS-M1 - Suitable throughout the Kerbin subsystem // Comms DTS-M1 - Suitable throughout the Kerbin subsystem
// Communotron 88-88 - Suitable throughout the Kerbol system. // Communotron 88-88 - Suitable throughout the Kerbol system.
// //
// This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a // This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a
// copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ // copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
// //
// This software uses the ModuleManager library © 2013 ialdabaoth, used under a Creative Commons Attribution-ShareAlike // This software uses the ModuleManager library © 2013 ialdabaoth, used under a Creative Commons Attribution-ShareAlike
// 3.0 Uported License. // 3.0 Uported License.
// //
// This software uses code from the MuMechLib library, © 2013 r4m0n, used under the GNU GPL version 3. // This software uses code from the MuMechLib library, © 2013 r4m0n, used under the GNU GPL version 3.
   
using System; using System;
using System.Collections.Generic; using System.Collections.Generic;
using System.Linq; using System.Linq;
   
namespace AntennaRange namespace AntennaRange
{ {
public class AntennaRelay : IAntennaRelay public class AntennaRelay
{ {
// We don't have a Bard, so we'll hide Kerbin here. // We don't have a Bard, so we'll hide Kerbin here.
protected CelestialBody Kerbin; protected CelestialBody Kerbin;
   
  protected IAntennaRelay _nearestRelayCache;
  protected IAntennaRelay moduleRef;
   
protected System.Diagnostics.Stopwatch searchTimer; protected System.Diagnostics.Stopwatch searchTimer;
protected long millisecondsBetweenSearches; protected long millisecondsBetweenSearches;
   
/// <summary> /// <summary>
/// Gets the parent Vessel. /// Gets the parent Vessel.
/// </summary> /// </summary>
/// <value>The parent Vessel.</value> /// <value>The parent Vessel.</value>
public Vessel vessel public Vessel vessel
{ {
  get
  {
  return this.moduleRef.vessel;
  }
  }
   
  /// <summary>
  /// Gets or sets the nearest relay.
  /// </summary>
  /// <value>The nearest relay</value>
  public IAntennaRelay nearestRelay
  {
  get
  {
  if (this.searchTimer.IsRunning &&
  this.searchTimer.ElapsedMilliseconds > this.millisecondsBetweenSearches)
  {
  this._nearestRelayCache = this.FindNearestRelay();
  this.searchTimer.Restart();
  }
   
  return this._nearestRelayCache;
  }
  protected set
  {
  this._nearestRelayCache = value;
  }
  }
   
  /// <summary>
  /// Gets the transmit distance.
  /// </summary>
  /// <value>The transmit distance.</value>
  public double transmitDistance
  {
  get
  {
  this.nearestRelay = this.FindNearestRelay();
   
  // If there is no available relay nearby...
  if (this.nearestRelay == null)
  {
  // .. return the distance to Kerbin
  return this.DistanceTo(this.Kerbin);
  }
  else
  {
  /// ...otherwise, return the distance to the nearest available relay.
  return this.DistanceTo(nearestRelay);
  }
  }
  }
   
  /// <summary>
  /// The maximum distance at which this relay can operate.
  /// </summary>
  /// <value>The max transmit distance.</value>
  public virtual float maxTransmitDistance
  {
  get;
  set;
  }
   
  /// <summary>
  /// Gets a value indicating whether this <see cref="AntennaRange.ProtoDataTransmitter"/> has been checked during
  /// the current relay attempt.
  /// </summary>
  /// <value><c>true</c> if relay checked; otherwise, <c>false</c>.</value>
  public virtual bool relayChecked
  {
get; get;
protected set; protected set;
} }
   
/// <summary> /// <summary>
/// Gets or sets the nearest relay.  
/// </summary>  
/// <value>The nearest relay</value>  
public IAntennaRelay nearestRelay  
{  
get;  
protected set;  
}  
   
/// <summary>  
/// Gets the transmit distance.  
/// </summary>  
/// <value>The transmit distance.</value>  
public double transmitDistance  
{  
get  
{  
this.nearestRelay = this.FindNearestRelay();  
   
// If there is no available relay nearby...  
if (nearestRelay == null)  
{  
// .. return the distance to Kerbin  
return this.DistanceTo(this.Kerbin);  
}  
else  
{  
/// ...otherwise, return the distance to the nearest available relay.  
return this.DistanceTo(nearestRelay);  
}  
}  
}  
   
/// <summary>  
/// The maximum distance at which this relay can operate.  
/// </summary>  
/// <value>The max transmit distance.</value>  
public virtual float maxTransmitDistance  
{  
get;  
set;  
}  
   
/// <summary>  
/// Gets a value indicating whether this <see cref="AntennaRange.ProtoDataTransmitter"/> has been checked during  
/// the current relay attempt.  
/// </summary>  
/// <value><c>true</c> if relay checked; otherwise, <c>false</c>.</value>  
public virtual bool relayChecked  
{  
get;  
protected set;  
}  
   
/// <summary>  
/// Determines whether this instance can transmit. /// Determines whether this instance can transmit.
/// </summary> /// </summary>
/// <returns><c>true</c> if this instance can transmit; otherwise, <c>false</c>.</returns> /// <returns><c>true</c> if this instance can transmit; otherwise, <c>false</c>.</returns>
public bool CanTransmit() public virtual bool CanTransmit()
{ {
if (this.transmitDistance > this.maxTransmitDistance) if (this.transmitDistance > this.maxTransmitDistance)
{ {
return false; return false;
} }
else else
{ {
return true; return true;
} }
} }
   
/// <summary> /// <summary>
/// Finds the nearest relay. /// Finds the nearest relay.
/// </summary> /// </summary>
/// <returns>The nearest relay or null, if no relays in range.</returns> /// <returns>The nearest relay or null, if no relays in range.</returns>
public IAntennaRelay FindNearestRelay() public IAntennaRelay FindNearestRelay()
{ {
if (this.searchTimer.IsRunning && this.searchTimer.ElapsedMilliseconds < this.millisecondsBetweenSearches) if (this.searchTimer.IsRunning && this.searchTimer.ElapsedMilliseconds < this.millisecondsBetweenSearches)
{ {
return this.nearestRelay; return this.nearestRelay;
} }
   
if (this.searchTimer.IsRunning) if (this.searchTimer.IsRunning)
{ {
this.searchTimer.Stop(); this.searchTimer.Stop();
this.searchTimer.Reset(); this.searchTimer.Reset();
} }
   
this.searchTimer.Start(); this.searchTimer.Start();
   
// Set this relay as checked, so that we don't check it again.  
this.relayChecked = true;  
   
// Get a list of vessels within transmission range.  
List<Vessel> nearbyVessels = FlightGlobals.Vessels  
.Where(v => (v.GetWorldPos3D() - vessel.GetWorldPos3D()).magnitude < this.maxTransmitDistance)  
.ToList();  
   
nearbyVessels.RemoveAll(v => v.vesselType == VesselType.Debris);  
   
Tools.PostDebugMessage(string.Format( Tools.PostDebugMessage(string.Format(
"{0}: Non-debris vessels in range: {1}", "{0}: finding nearest relay for {1} ({2})",
this.GetType().Name, this.GetType().Name,
nearbyVessels.Count this,
)); this.vessel.id
  ));
// Remove this vessel.  
nearbyVessels.RemoveAll(v => v.id == vessel.id); // Set this vessel as checked, so that we don't check it again.
  RelayDatabase.Instance.CheckedVesselsTable[vessel.id] = true;
Tools.PostDebugMessage(string.Format(  
"{0}: Vessels in range excluding self: {1}", double nearestDistance = double.PositiveInfinity;
this.GetType().Name, IAntennaRelay _nearestRelay = null;
nearbyVessels.Count  
)); /*
  * Loop through all the vessels and exclude this vessel, vessels of the wrong type, and vessels that are too
// Get a flattened list of all IAntennaRelay modules and protomodules in transmission range. * far away. When we find a candidate, get through its antennae for relays which have not been checked yet
List<IAntennaRelay> nearbyRelays = nearbyVessels.SelectMany(v => v.GetAntennaRelays()).ToList(); * and that can transmit. Once we find a suitable candidate, assign it to _nearestRelay for comparison
  * against future finds.
Tools.PostDebugMessage(string.Format( * */
"{0}: Found {1} nearby relays.", foreach (Vessel potentialVessel in FlightGlobals.Vessels)
this.GetType().Name, {
nearbyRelays.Count // Skip vessels that have already been checked for a nearest relay this pass.
)); try
  {
// Remove all relays already checked this time. if (RelayDatabase.Instance.CheckedVesselsTable[potentialVessel.id])
nearbyRelays.RemoveAll(r => r.relayChecked); {
  continue;
Tools.PostDebugMessage(string.Format( }
"{0}: Found {1} nearby relays not already checked.", }
this.GetType().Name, catch (KeyNotFoundException) { /* If the key doesn't exist, don't skip it. */}
nearbyRelays.Count  
)); // Skip vessels of the wrong type.
  switch (potentialVessel.vesselType)
// Remove all relays that cannot transmit. {
// This call to r.CanTransmit() starts a depth-first recursive search for relays with a path back to Kerbin. case VesselType.Debris:
nearbyRelays.RemoveAll(r => !r.CanTransmit()); case VesselType.Flag:
  case VesselType.EVA:
Tools.PostDebugMessage(string.Format( case VesselType.SpaceObject:
"{0}: Found {1} nearby relays not already checked that can transmit.", case VesselType.Unknown:
this.GetType().Name, continue;
nearbyRelays.Count default:
)); break;
  }
// Sort the available relays by distance.  
nearbyRelays.Sort(new RelayComparer(this.vessel)); // Skip vessels with the wrong ID
  if (potentialVessel.id == vessel.id)
// Get the nearest available relay, or null if there are no available relays nearby. {
IAntennaRelay _nearestRelay = nearbyRelays.FirstOrDefault(); continue;
  }
// If we have a nearby relay...  
if (_nearestRelay != null) // Find the distance from here to the vessel...
{ double potentialDistance = (potentialVessel.GetWorldPos3D() - vessel.GetWorldPos3D()).magnitude;
// ...but that relay is farther than Kerbin...  
if (this.DistanceTo(_nearestRelay) > this.DistanceTo(Kerbin)) /*
{ * ...so that we can skip the vessel if it is further away than Kerbin, our transmit distance, or a
// ...just use Kerbin. * vessel we've already checked.
_nearestRelay = null; * */
  if (potentialDistance > Tools.Min(this.maxTransmitDistance, nearestDistance, vessel.DistanceTo(Kerbin)))
  {
  continue;
  }
   
  nearestDistance = potentialDistance;
   
  foreach (IAntennaRelay potentialRelay in potentialVessel.GetAntennaRelays())
  {
  if (potentialRelay.CanTransmit())
  {
  _nearestRelay = potentialRelay;
  Tools.PostDebugMessage(string.Format("{0}: found new best relay {1} ({2})",
  this.GetType().Name,
  _nearestRelay.ToString(),
  _nearestRelay.vessel.id
  ));
  break;
  }
} }
} }
   
// Now that we're done with our recursive CanTransmit checks, flag this relay as not checked so it can be // Now that we're done with our recursive CanTransmit checks, flag this relay as not checked so it can be
// used next time. // used next time.
this.relayChecked = false; RelayDatabase.Instance.CheckedVesselsTable.Remove(vessel.id);
   
// Return the nearest available relay, or null if there are no available relays nearby. // Return the nearest available relay, or null if there are no available relays nearby.
return _nearestRelay; return _nearestRelay;
} }
   
public override string ToString()  
{  
return string.Format(  
"Antenna relay on vessel {0}.",  
vessel  
);  
}  
   
/// <summary> /// <summary>
/// Initializes a new instance of the <see cref="AntennaRange.ProtoDataTransmitter"/> class. /// Initializes a new instance of the <see cref="AntennaRange.ProtoDataTransmitter"/> class.
/// </summary> /// </summary>
/// <param name="ms"><see cref="ProtoPartModuleSnapshot"/></param> /// <param name="ms"><see cref="ProtoPartModuleSnapshot"/></param>
public AntennaRelay(Vessel v) public AntennaRelay(IAntennaRelay module)
{ {
this.vessel = v; this.moduleRef = module;
   
this.searchTimer = new System.Diagnostics.Stopwatch(); this.searchTimer = new System.Diagnostics.Stopwatch();
this.millisecondsBetweenSearches = 5000; this.millisecondsBetweenSearches = 5000;
   
// HACK: This might not be safe in all circumstances, but since AntennaRelays are not built until Start, // HACK: This might not be safe in all circumstances, but since AntennaRelays are not built until Start,
// we hope it is safe enough. // we hope it is safe enough.
this.Kerbin = FlightGlobals.Bodies.FirstOrDefault(b => b.name == "Kerbin"); this.Kerbin = FlightGlobals.Bodies.FirstOrDefault(b => b.name == "Kerbin");
} }
   
/*  
* Class implementing IComparer<IAntennaRelay> for use in sorting relays by distance.  
* */  
internal class RelayComparer : IComparer<IAntennaRelay>  
{  
/// <summary>  
/// The reference Vessel (usually the active vessel).  
/// </summary>  
protected Vessel referenceVessel;  
   
// We don't want no stinking public parameterless constructors.  
private RelayComparer() {}  
   
/// <summary>  
/// Initializes a new instance of the <see cref="AntennaRange.AntennaRelay+RelayComparer"/> class for use  
/// in sorting relays by distance.  
/// </summary>  
/// <param name="reference">The reference Vessel</param>  
public RelayComparer(Vessel reference)  
{  
this.referenceVessel = reference;  
}  
   
/// <summary>  
/// Compare the <see cref="IAntennaRelay"/>s "one" and "two".  
/// </summary>  
/// <param name="one">The first IAntennaRelay in the comparison</param>  
/// <param name="two">The second IAntennaRelay in the comparison</param>  
public int Compare(IAntennaRelay one, IAntennaRelay two)  
{  
double distanceOne;  
double distanceTwo;  
   
distanceOne = one.vessel.DistanceTo(referenceVessel);  
distanceTwo = two.vessel.DistanceTo(referenceVessel);  
   
return distanceOne.CompareTo(distanceTwo);  
}  
}  
} }
} }
   
   
file:b/ChangeLog (new)
  2014-01-14 toadicus <>
 
  * ModuleLimitedDataTransmitter.cs: Added a ":" to the
  transmission communications for consistency with stock
  behavior.
 
 
file:b/EventSniffer.cs (new)
  // AntennaRange © 2014 toadicus
  //
  // This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a
  // copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
 
  #if DEBUG
  using KSP;
  using System;
  using System.Text;
  using UnityEngine;
 
  namespace AntennaRange
  {
  [KSPAddon(KSPAddon.Startup.Flight, false)]
  public class EventSniffer : MonoBehaviour
  {
  public void Awake()
  {
  GameEvents.onSameVesselDock.Add(this.onSameVesselDockUndock);
  GameEvents.onSameVesselUndock.Add(this.onSameVesselDockUndock);
  GameEvents.onPartUndock.Add(this.onPartUndock);
  GameEvents.onUndock.Add(this.onReportEvent);
  GameEvents.onPartCouple.Add(this.onPartCouple);
  GameEvents.onPartJointBreak.Add(this.onPartJointBreak);
  }
 
  public void Destroy()
  {
  GameEvents.onSameVesselDock.Remove(this.onSameVesselDockUndock);
  GameEvents.onSameVesselUndock.Remove(this.onSameVesselDockUndock);
  GameEvents.onPartUndock.Remove(this.onPartUndock);
  GameEvents.onUndock.Remove(this.onReportEvent);
  GameEvents.onPartCouple.Remove(this.onPartCouple);
  GameEvents.onPartJointBreak.Remove(this.onPartJointBreak);
  }
 
  public void onSameVesselDockUndock(GameEvents.FromToAction<ModuleDockingNode, ModuleDockingNode> data)
  {
  this.FromModuleToModuleHelper(
  this.getStringBuilder(),
  new GameEvents.FromToAction<PartModule, PartModule>(data.from, data.to)
  );
  }
 
  public void onPartJointBreak(PartJoint joint)
  {
  this.PartJointHelper(this.getStringBuilder(), joint);
  }
 
  public void onPartUndock(Part part)
  {
  this.PartEventHelper(this.getStringBuilder(), part);
  }
 
  public void onReportEvent(EventReport data)
  {
  this.EventReportHelper(this.getStringBuilder(), data);
  }
 
  public void onPartCouple(GameEvents.FromToAction<Part, Part> data)
  {
  this.FromPartToPartHelper(this.getStringBuilder(), data);
  }
 
  internal void EventReportHelper(StringBuilder sb, EventReport data)
  {
  sb.Append("\n\tOrigin Part:");
  this.appendPartAncestry(sb, data.origin);
 
  sb.AppendFormat(
  "\n\tother: '{0}'" +
  "\n\tmsg: '{1}'" +
  "\n\tsender: '{2}'",
  data.other,
  data.msg,
  data.sender
  );
 
  Debug.Log(sb.ToString());
  }
 
  internal void PartEventHelper(StringBuilder sb, Part part)
  {
  this.appendPartAncestry(sb, part);
 
  Debug.Log(sb.ToString());
  }
 
  internal void FromPartToPartHelper(StringBuilder sb, GameEvents.FromToAction<Part, Part> data)
  {
  sb.Append("\n\tFrom:");
 
  this.appendPartAncestry(sb, data.from);
 
  sb.Append("\n\tTo:");
 
  this.appendPartAncestry(sb, data.to);
 
  Debug.Log(sb.ToString());
  }
 
  internal void FromModuleToModuleHelper(StringBuilder sb, GameEvents.FromToAction<PartModule, PartModule> data)
  {
  sb.Append("\n\tFrom:");
 
  this.appendModuleAncestry(sb, data.from);
 
  sb.Append("\n\tTo:");
 
  this.appendModuleAncestry(sb, data.to);
 
  Debug.Log(sb.ToString());
  }
 
  internal void PartJointHelper(StringBuilder sb, PartJoint joint)
  {
  sb.Append("PartJoint: ");
  if (joint != null)
  {
  sb.Append(joint);
  this.appendPartAncestry(sb, joint.Host);
  }
  else
  {
  sb.Append("null");
  }
 
  Debug.Log(sb.ToString());
  }
 
  internal StringBuilder appendModuleAncestry(StringBuilder sb, PartModule module, uint tabs = 1)
  {
  sb.Append('\n');
  for (ushort i=0; i < tabs; i++)
  {
  sb.Append('\t');
  }
  sb.Append("Module: ");
 
  if (module != null)
  {
  sb.Append(module.moduleName);
  this.appendPartAncestry(sb, module.part, tabs + 1u);
  }
  else
  {
  sb.Append("null");
  }
 
  return sb;
  }
 
  internal StringBuilder appendPartAncestry(StringBuilder sb, Part part, uint tabs = 1)
  {
  sb.Append('\n');
  for (ushort i=0; i < tabs; i++)
  {
  sb.Append('\t');
  }
  sb.Append("Part: ");
 
  if (part != null)
  {
  sb.AppendFormat("'{0}' ({1})", part.partInfo.title, part.partName);
  this.appendVessel(sb, part.vessel, tabs + 1u);
  }
  else
  {
  sb.Append("null");
  }
 
  return sb;
  }
 
  internal StringBuilder appendVessel(StringBuilder sb, Vessel vessel, uint tabs = 1)
  {
  sb.Append('\n');
  for (ushort i=0; i < tabs; i++)
  {
  sb.Append('\t');
  }
  sb.Append("Vessel: ");
 
  if (vessel != null)
  {
  sb.AppendFormat("'{0}' ({1})", vessel.vesselName, vessel.id);
  }
  else
  {
  sb.Append("null");
  }
 
  return sb;
  }
 
  internal StringBuilder getStringBuilder()
  {
  StringBuilder sb = new StringBuilder();
  sb.AppendFormat("{0}: called {1} ",
  this.GetType().Name,
  new System.Diagnostics.StackTrace().GetFrame(1).GetMethod().Name
  );
  return sb;
  }
  }
  }
  #endif
// AntennaRange © 2014 toadicus // AntennaRange © 2014 toadicus
// //
// AntennaRange provides incentive and requirements for the use of the various antenna parts. // AntennaRange provides incentive and requirements for the use of the various antenna parts.
// Nominally, the breakdown is as follows: // Nominally, the breakdown is as follows:
// //
// Communotron 16 - Suitable up to Kerbalsynchronous Orbit // Communotron 16 - Suitable up to Kerbalsynchronous Orbit
// Comms DTS-M1 - Suitable throughout the Kerbin subsystem // Comms DTS-M1 - Suitable throughout the Kerbin subsystem
// Communotron 88-88 - Suitable throughout the Kerbol system. // Communotron 88-88 - Suitable throughout the Kerbol system.
// //
// This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a // This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a
// copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ // copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
// //
// This software uses the ModuleManager library © 2013 ialdabaoth, used under a Creative Commons Attribution-ShareAlike // This software uses the ModuleManager library © 2013 ialdabaoth, used under a Creative Commons Attribution-ShareAlike
// 3.0 Uported License. // 3.0 Uported License.
// //
// This software uses code from the MuMechLib library, © 2013 r4m0n, used under the GNU GPL version 3. // This software uses code from the MuMechLib library, © 2013 r4m0n, used under the GNU GPL version 3.
   
using System; using System;
using System.Collections.Generic; using System.Collections.Generic;
using System.Linq; using System.Linq;
   
namespace AntennaRange namespace AntennaRange
{ {
/* /*
* A class of utility extensions for Vessels and Relays to help find a relay path back to Kerbin. * A class of utility extensions for Vessels and Relays to help find a relay path back to Kerbin.
* */ * */
public static class Extensions public static class Extensions
{ {
/// <summary> /// <summary>
/// Returns the distance between this Vessel and another Vessel. /// Returns the distance between this Vessel and another Vessel.
/// </summary> /// </summary>
/// <param name="vesselOne">This <see cref="Vessel"/><see ></param> /// <param name="vesselOne">This <see cref="Vessel"/><see ></param>
/// <param name="vesselTwo">Another <see cref="Vessel"/></param> /// <param name="vesselTwo">Another <see cref="Vessel"/></param>
public static double DistanceTo(this Vessel vesselOne, Vessel vesselTwo) public static double DistanceTo(this Vessel vesselOne, Vessel vesselTwo)
{ {
return (vesselOne.GetWorldPos3D() - vesselTwo.GetWorldPos3D()).magnitude; return (vesselOne.GetWorldPos3D() - vesselTwo.GetWorldPos3D()).magnitude;
} }
   
/// <summary> /// <summary>
/// Returns the distance between this Vessel and a CelestialBody /// Returns the distance between this Vessel and a CelestialBody
/// </summary> /// </summary>
/// <param name="vessel">This Vessel</param> /// <param name="vessel">This Vessel</param>
/// <param name="body">A <see cref="CelestialBody"/></param> /// <param name="body">A <see cref="CelestialBody"/></param>
public static double DistanceTo(this Vessel vessel, CelestialBody body) public static double DistanceTo(this Vessel vessel, CelestialBody body)
{ {
return (vessel.GetWorldPos3D() - body.position).magnitude; return (vessel.GetWorldPos3D() - body.position).magnitude;
} }
   
/// <summary> /// <summary>
/// Returns the distance between this IAntennaRelay and a Vessel /// Returns the distance between this IAntennaRelay and a Vessel
/// </summary> /// </summary>
/// <param name="relay">This <see cref="IAntennaRelay"/></param> /// <param name="relay">This <see cref="IAntennaRelay"/></param>
/// <param name="Vessel">A <see cref="Vessel"/></param> /// <param name="Vessel">A <see cref="Vessel"/></param>
public static double DistanceTo(this AntennaRelay relay, Vessel Vessel) public static double DistanceTo(this AntennaRelay relay, Vessel Vessel)
{ {
return relay.vessel.DistanceTo(Vessel); return relay.vessel.DistanceTo(Vessel);
} }
   
/// <summary> /// <summary>
/// Returns the distance between this IAntennaRelay and a CelestialBody /// Returns the distance between this IAntennaRelay and a CelestialBody
/// </summary> /// </summary>
/// <param name="relay">This <see cref="IAntennaRelay"/></param> /// <param name="relay">This <see cref="IAntennaRelay"/></param>
/// <param name="body">A <see cref="CelestialBody"/></param> /// <param name="body">A <see cref="CelestialBody"/></param>
public static double DistanceTo(this AntennaRelay relay, CelestialBody body) public static double DistanceTo(this AntennaRelay relay, CelestialBody body)
{ {
return relay.vessel.DistanceTo(body); return relay.vessel.DistanceTo(body);
} }
   
/// <summary> /// <summary>
/// Returns the distance between this IAntennaRelay and another IAntennaRelay /// Returns the distance between this IAntennaRelay and another IAntennaRelay
/// </summary> /// </summary>
/// <param name="relayOne">This <see cref="IAntennaRelay"/></param> /// <param name="relayOne">This <see cref="IAntennaRelay"/></param>
/// <param name="relayTwo">Another <see cref="IAntennaRelay"/></param> /// <param name="relayTwo">Another <see cref="IAntennaRelay"/></param>
public static double DistanceTo(this AntennaRelay relayOne, IAntennaRelay relayTwo) public static double DistanceTo(this AntennaRelay relayOne, IAntennaRelay relayTwo)
{ {
return relayOne.DistanceTo(relayTwo.vessel); return relayOne.DistanceTo(relayTwo.vessel);
} }
   
/// <summary> /// <summary>
/// Returns all of the PartModules or ProtoPartModuleSnapshots implementing IAntennaRelay in this Vessel. /// Returns all of the PartModules or ProtoPartModuleSnapshots implementing IAntennaRelay in this Vessel.
/// </summary> /// </summary>
/// <param name="vessel">This <see cref="Vessel"/></param> /// <param name="vessel">This <see cref="Vessel"/></param>
public static IEnumerable<IAntennaRelay> GetAntennaRelays (this Vessel vessel) public static IEnumerable<IAntennaRelay> GetAntennaRelays (this Vessel vessel)
{ {
Tools.PostDebugMessage(string.Format( return RelayDatabase.Instance[vessel].Values.ToList();
"{0}: Getting antenna relays from vessel {1}.",  
"IAntennaRelay",  
vessel.name  
));  
   
List<IAntennaRelay> Transmitters;  
   
// If the vessel is loaded, we can fetch modules implementing IAntennaRelay directly.  
if (vessel.loaded) {  
Tools.PostDebugMessage(string.Format(  
"{0}: vessel {1} is loaded.",  
"IAntennaRelay",  
vessel.name  
));  
   
// Gets a list of PartModules implementing IAntennaRelay  
Transmitters = vessel.Parts  
.SelectMany (p => p.Modules.OfType<IAntennaRelay> ())  
.ToList();  
}  
// If the vessel is not loaded, we need to build ProtoAntennaRelays when we find relay ProtoPartSnapshots.  
else  
{  
Tools.PostDebugMessage(string.Format(  
"{0}: vessel {1} is not loaded.",  
"IAntennaRelay",  
vessel.name  
));  
   
Dictionary<int, IAntennaRelay> prebuiltProtoRelays;  
   
Transmitters = new List<IAntennaRelay>();  
   
if (relayDatabase.ContainsKey(vessel.id))  
{  
return relayDatabase[vessel.id].Values.ToList();  
}  
else  
{  
prebuiltProtoRelays = new Dictionary<int, IAntennaRelay>();  
relayDatabase[vessel.id] = prebuiltProtoRelays;  
}  
   
// Loop through the ProtoPartModuleSnapshots in this Vessel  
foreach (ProtoPartSnapshot pps in vessel.protoVessel.protoPartSnapshots)  
{  
IAntennaRelay relayModule;  
ProtoAntennaRelay protoRelay;  
int partHash;  
   
relayModule = null;  
protoRelay = null;  
partHash = pps.GetHashCode();  
   
if (prebuiltProtoRelays.ContainsKey(partHash))  
{  
protoRelay = (ProtoAntennaRelay)prebuiltProtoRelays[partHash];  
}  
else  
{  
foreach (PartModule module in PartLoader.getPartInfoByName(pps.partName).partPrefab.Modules)  
{  
if (module is IAntennaRelay)  
{  
relayModule = module as IAntennaRelay;  
   
protoRelay = new ProtoAntennaRelay(relayModule, vessel);  
prebuiltProtoRelays[partHash] = protoRelay;  
break;  
}  
}  
}  
   
if (protoRelay != null)  
{  
Transmitters.Add(protoRelay);  
}  
}  
}  
   
Tools.PostDebugMessage(string.Format(  
"{0}: vessel {1} has {2} transmitters.",  
"IAntennaRelay",  
vessel.name,  
Transmitters.Count  
));  
   
// Return the list of IAntennaRelays  
return Transmitters;  
} }
   
private static Dictionary<Guid, Dictionary<int, IAntennaRelay>> relayDatabase =  
new Dictionary<Guid, Dictionary<int, IAntennaRelay>>();  
} }
} }
   
   
// AntennaRange © 2014 toadicus // AntennaRange © 2014 toadicus
// //
// AntennaRange provides incentive and requirements for the use of the various antenna parts. // AntennaRange provides incentive and requirements for the use of the various antenna parts.
// Nominally, the breakdown is as follows: // Nominally, the breakdown is as follows:
// //
// Communotron 16 - Suitable up to Kerbalsynchronous Orbit // Communotron 16 - Suitable up to Kerbalsynchronous Orbit
// Comms DTS-M1 - Suitable throughout the Kerbin subsystem // Comms DTS-M1 - Suitable throughout the Kerbin subsystem
// Communotron 88-88 - Suitable throughout the Kerbol system. // Communotron 88-88 - Suitable throughout the Kerbol system.
// //
// This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a // This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a
// copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ // copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
// //
// This software uses the ModuleManager library © 2013 ialdabaoth, used under a Creative Commons Attribution-ShareAlike // This software uses the ModuleManager library © 2013 ialdabaoth, used under a Creative Commons Attribution-ShareAlike
// 3.0 Uported License. // 3.0 Uported License.
// //
// This software uses code from the MuMechLib library, © 2013 r4m0n, used under the GNU GPL version 3. // This software uses code from the MuMechLib library, © 2013 r4m0n, used under the GNU GPL version 3.
   
using System; using System;
using System.Collections.Generic; using System.Collections.Generic;
using System.Linq; using System.Linq;
using System.Text; using System.Text;
using KSP; using KSP;
using UnityEngine; using UnityEngine;
   
namespace AntennaRange namespace AntennaRange
{ {
/* /*
* ModuleLimitedDataTransmitter is designed as a drop-in replacement for ModuleDataTransmitter, and handles range- * ModuleLimitedDataTransmitter is designed as a drop-in replacement for ModuleDataTransmitter, and handles range-
* finding, power scaling, and data scaling for antennas during science transmission. Its functionality varies with * finding, power scaling, and data scaling for antennas during science transmission. Its functionality varies with
* three tunables: nominalRange, maxPowerFactor, and maxDataFactor, set in .cfg files. * three tunables: nominalRange, maxPowerFactor, and maxDataFactor, set in .cfg files.
* *
* In general, the scaling functions assume the following relation: * In general, the scaling functions assume the following relation:
* *
* D² α P/R, * D² α P/R,
* *
* where D is the total transmission distance, P is the transmission power, and R is the data rate. * where D is the total transmission distance, P is the transmission power, and R is the data rate.
* *
* */ * */
   
/* /*
* Fields * Fields
* */ * */
public class ModuleLimitedDataTransmitter : ModuleDataTransmitter, IScienceDataTransmitter, IAntennaRelay public class ModuleLimitedDataTransmitter : ModuleDataTransmitter, IScienceDataTransmitter, IAntennaRelay
{ {
// Stores the packetResourceCost as defined in the .cfg file. // Stores the packetResourceCost as defined in the .cfg file.
protected float _basepacketResourceCost; protected float _basepacketResourceCost;
   
// Stores the packetSize as defined in the .cfg file. // Stores the packetSize as defined in the .cfg file.
protected float _basepacketSize; protected float _basepacketSize;
   
// Every antenna is a relay. // Every antenna is a relay.
protected AntennaRelay relay; protected AntennaRelay relay;
   
// Keep track of vessels with transmitters for relay purposes. // Keep track of vessels with transmitters for relay purposes.
protected List<Vessel> _relayVessels; protected List<Vessel> _relayVessels;
   
// Sometimes we will need to communicate errors; this is how we do it. // Sometimes we will need to communicate errors; this is how we do it.
protected ScreenMessage ErrorMsg; protected ScreenMessage ErrorMsg;
   
// The distance from Kerbin at which the antenna will perform exactly as prescribed by packetResourceCost // The distance from Kerbin at which the antenna will perform exactly as prescribed by packetResourceCost
// and packetSize. // and packetSize.
[KSPField(isPersistant = false)] [KSPField(isPersistant = false)]
public float nominalRange; public float nominalRange;
   
[KSPField(isPersistant = false, guiActive = true, guiName = "Transmission Distance")] [KSPField(isPersistant = false, guiActive = true, guiName = "Transmission Distance")]
public string UItransmitDistance; public string UItransmitDistance;
   
[KSPField(isPersistant = false, guiActive = true, guiName = "Maximum Distance")] [KSPField(isPersistant = false, guiActive = true, guiName = "Maximum Distance")]
public string UImaxTransmitDistance; public string UImaxTransmitDistance;
   
[KSPField(isPersistant = false, guiActive = true, guiName = "Packet Size")] [KSPField(isPersistant = false, guiActive = true, guiName = "Packet Size")]
public string UIpacketSize; public string UIpacketSize;
   
[KSPField(isPersistant = false, guiActive = true, guiName = "Packet Cost")] [KSPField(isPersistant = false, guiActive = true, guiName = "Packet Cost")]
public string UIpacketCost; public string UIpacketCost;
   
// The multiplier on packetResourceCost that defines the maximum power output of the antenna. When the power // The multiplier on packetResourceCost that defines the maximum power output of the antenna. When the power
// cost exceeds packetResourceCost * maxPowerFactor, transmission will fail. // cost exceeds packetResourceCost * maxPowerFactor, transmission will fail.
[KSPField(isPersistant = false)] [KSPField(isPersistant = false)]
public float maxPowerFactor; public float maxPowerFactor;
   
// The multipler on packetSize that defines the maximum data bandwidth of the antenna. // The multipler on packetSize that defines the maximum data bandwidth of the antenna.
[KSPField(isPersistant = false)] [KSPField(isPersistant = false)]
public float maxDataFactor; public float maxDataFactor;
   
protected bool actionUIUpdate; protected bool actionUIUpdate;
   
/* /*
* Properties * Properties
* */ * */
// Returns the parent vessel housing this antenna. // Returns the parent vessel housing this antenna.
public new Vessel vessel public new Vessel vessel
{ {
get get
{ {
return base.vessel; return base.vessel;
} }
} }
   
// Returns the distance to the nearest relay or Kerbin, whichever is closer. // Returns the distance to the nearest relay or Kerbin, whichever is closer.
public double transmitDistance public double transmitDistance
{ {
get get
{ {
return this.relay.transmitDistance; return this.relay.transmitDistance;
} }
} }
   
// Returns the maximum distance this module can transmit // Returns the maximum distance this module can transmit
public float maxTransmitDistance public float maxTransmitDistance
{ {
get get
{ {
return Mathf.Sqrt (this.maxPowerFactor) * this.nominalRange; return Mathf.Sqrt (this.maxPowerFactor) * this.nominalRange;
} }
} }
   
/* /*
* The next two functions overwrite the behavior of the stock functions and do not perform equivalently, except * The next two functions overwrite the behavior of the stock functions and do not perform equivalently, except
* in that they both return floats. Here's some quick justification: * in that they both return floats. Here's some quick justification:
* *
* The stock implementation of GetTransmitterScore (which I cannot override) is: * The stock implementation of GetTransmitterScore (which I cannot override) is:
* Score = (1 + DataResourceCost) / DataRate * Score = (1 + DataResourceCost) / DataRate
* *
* The stock DataRate and DataResourceCost are: * The stock DataRate and DataResourceCost are:
* DataRate = packetSize / packetInterval * DataRate = packetSize / packetInterval
* DataResourceCost = packetResourceCost / packetSize * DataResourceCost = packetResourceCost / packetSize
* *
* So, the resulting score is essentially in terms of joules per byte per baud. Rearranging that a bit, it * So, the resulting score is essentially in terms of joules per byte per baud. Rearranging that a bit, it
* could also look like joule-seconds per byte per byte, or newton-meter-seconds per byte per byte. Either way, * could also look like joule-seconds per byte per byte, or newton-meter-seconds per byte per byte. Either way,
* that metric is not a very reasonable one. * that metric is not a very reasonable one.
* *
* Two metrics that might make more sense are joules per byte or joules per byte per second. The latter case * Two metrics that might make more sense are joules per byte or joules per byte per second. The latter case
* would look like: * would look like:
* DataRate = packetSize / packetInterval * DataRate = packetSize / packetInterval
* DataResourceCost = packetResourceCost * DataResourceCost = packetResourceCost
* *
* The former case, which I've chosen to implement below, is: * The former case, which I've chosen to implement below, is:
* DataRate = packetSize * DataRate = packetSize
* DataResourceCost = packetResourceCost * DataResourceCost = packetResourceCost
* *
* So... hopefully that doesn't screw with anything else. * So... hopefully that doesn't screw with anything else.
* */ * */
// Override ModuleDataTransmitter.DataRate to just return packetSize, because we want antennas to be scored in // Override ModuleDataTransmitter.DataRate to just return packetSize, because we want antennas to be scored in
// terms of joules/byte // terms of joules/byte
public new float DataRate public new float DataRate
{ {
get get
{ {
this.PreTransmit_SetPacketSize(); this.PreTransmit_SetPacketSize();
   
if (this.CanTransmit()) if (this.CanTransmit())
{ {
return this.packetSize; return this.packetSize;
} }
else else
{ {
return float.Epsilon; return float.Epsilon;
} }
} }
} }
   
// Override ModuleDataTransmitter.DataResourceCost to just return packetResourceCost, because we want antennas // Override ModuleDataTransmitter.DataResourceCost to just return packetResourceCost, because we want antennas
// to be scored in terms of joules/byte // to be scored in terms of joules/byte
public new float DataResourceCost public new float DataResourceCost
{ {
get get
{ {
this.PreTransmit_SetPacketResourceCost(); this.PreTransmit_SetPacketResourceCost();
   
if (this.CanTransmit()) if (this.CanTransmit())
{ {
return this.packetResourceCost; return this.packetResourceCost;
} }
else else
{ {
return float.PositiveInfinity; return float.PositiveInfinity;
} }
} }
} }
   
// Reports whether this antenna has been checked as a viable relay already in the current FindNearestRelay. // Reports whether this antenna has been checked as a viable relay already in the current FindNearestRelay.
public bool relayChecked public bool relayChecked
{ {
get get
{ {
return this.relay.relayChecked; return this.relay.relayChecked;
} }
} }
   
/* /*
* Methods * Methods
* */ * */
// Build ALL the objects. // Build ALL the objects.
public ModuleLimitedDataTransmitter () : base() public ModuleLimitedDataTransmitter () : base()
{ {
this.ErrorMsg = new ScreenMessage("", 4f, false, ScreenMessageStyle.UPPER_LEFT); this.ErrorMsg = new ScreenMessage("", 4f, false, ScreenMessageStyle.UPPER_LEFT);
} }
   
// At least once, when the module starts with a state on the launch pad or later, go find Kerbin. // At least once, when the module starts with a state on the launch pad or later, go find Kerbin.
public override void OnStart (StartState state) public override void OnStart (StartState state)
{ {
base.OnStart (state); base.OnStart (state);
   
if (state >= StartState.PreLaunch) if (state >= StartState.PreLaunch)
{ {
this.relay = new AntennaRelay(vessel); this.relay = new AntennaRelay(vessel);
this.relay.maxTransmitDistance = this.maxTransmitDistance; this.relay.maxTransmitDistance = this.maxTransmitDistance;
   
this.UImaxTransmitDistance = Tools.MuMech_ToSI(this.maxTransmitDistance) + "m"; this.UImaxTransmitDistance = Tools.MuMech_ToSI(this.maxTransmitDistance) + "m";
   
GameEvents.onPartActionUICreate.Add(this.onPartActionUICreate); GameEvents.onPartActionUICreate.Add(this.onPartActionUICreate);
GameEvents.onPartActionUIDismiss.Add(this.onPartActionUIDismiss); GameEvents.onPartActionUIDismiss.Add(this.onPartActionUIDismiss);
} }
} }
   
// When the module loads, fetch the Squad KSPFields from the base. This is necessary in part because // When the module loads, fetch the Squad KSPFields from the base. This is necessary in part because
// overloading packetSize and packetResourceCostinto a property in ModuleLimitedDataTransmitter didn't // overloading packetSize and packetResourceCostinto a property in ModuleLimitedDataTransmitter didn't
// work. // work.
public override void OnLoad(ConfigNode node) public override void OnLoad(ConfigNode node)
{ {
this.Fields.Load(node); this.Fields.Load(node);
base.Fields.Load(node); base.Fields.Load(node);
   
base.OnLoad (node); base.OnLoad (node);
   
this._basepacketSize = base.packetSize; this._basepacketSize = base.packetSize;
this._basepacketResourceCost = base.packetResourceCost; this._basepacketResourceCost = base.packetResourceCost;
   
Tools.PostDebugMessage(string.Format( Tools.PostDebugMessage(string.Format(
"{0} loaded:\n" + "{0} loaded:\n" +
"packetSize: {1}\n" + "packetSize: {1}\n" +
"packetResourceCost: {2}\n" + "packetResourceCost: {2}\n" +
"nominalRange: {3}\n" + "nominalRange: {3}\n" +
"maxPowerFactor: {4}\n" + "maxPowerFactor: {4}\n" +
"maxDataFactor: {5}\n", "maxDataFactor: {5}\n",
this.name, this.name,
base.packetSize, base.packetSize,
this._basepacketResourceCost, this._basepacketResourceCost,
this.nominalRange, this.nominalRange,
this.maxPowerFactor, this.maxPowerFactor,
this.maxDataFactor this.maxDataFactor
)); ));
} }
   
// Post an error in the communication messages describing the reason transmission has failed. Currently there // Post an error in the communication messages describing the reason transmission has failed. Currently there
// is only one reason for this. // is only one reason for this.
protected void PostCannotTransmitError() protected void PostCannotTransmitError()
{ {
string ErrorText = string.Format ( string ErrorText = string.Format (
"Unable to transmit: out of range! Maximum range = {0}m; Current range = {1}m.", "Unable to transmit: out of range! Maximum range = {0}m; Current range = {1}m.",
Tools.MuMech_ToSI((double)this.maxTransmitDistance, 2), Tools.MuMech_ToSI((double)this.maxTransmitDistance, 2),
Tools.MuMech_ToSI((double)this.transmitDistance, 2) Tools.MuMech_ToSI((double)this.transmitDistance, 2)
); );
   
this.ErrorMsg.message = string.Format( this.ErrorMsg.message = string.Format(
"<color='#{0}{1}{2}{3}'><b>{4}</b></color>", "<color='#{0}{1}{2}{3}'><b>{4}</b></color>",
((int)(XKCDColors.OrangeRed.r * 255f)).ToString("x2"), ((int)(XKCDColors.OrangeRed.r * 255f)).ToString("x2"),
((int)(XKCDColors.OrangeRed.g * 255f)).ToString("x2"), ((int)(XKCDColors.OrangeRed.g * 255f)).ToString("x2"),
((int)(XKCDColors.OrangeRed.b * 255f)).ToString("x2"), ((int)(XKCDColors.OrangeRed.b * 255f)).ToString("x2"),
((int)(XKCDColors.OrangeRed.a * 255f)).ToString("x2"), ((int)(XKCDColors.OrangeRed.a * 255f)).ToString("x2"),
ErrorText ErrorText
); );
   
Tools.PostDebugMessage(this.GetType().Name + ": " + this.ErrorMsg.message); Tools.PostDebugMessage(this.GetType().Name + ": " + this.ErrorMsg.message);
   
ScreenMessages.PostScreenMessage(this.ErrorMsg, false); ScreenMessages.PostScreenMessage(this.ErrorMsg, false);
} }
   
// Before transmission, set packetResourceCost. Per above, packet cost increases with the square of // Before transmission, set packetResourceCost. Per above, packet cost increases with the square of
// distance. packetResourceCost maxes out at _basepacketResourceCost * maxPowerFactor, at which point // distance. packetResourceCost maxes out at _basepacketResourceCost * maxPowerFactor, at which point
// transmission fails (see CanTransmit). // transmission fails (see CanTransmit).
protected void PreTransmit_SetPacketResourceCost() protected void PreTransmit_SetPacketResourceCost()
{ {
if (this.transmitDistance <= this.nominalRange) if (this.transmitDistance <= this.nominalRange)
{ {
base.packetResourceCost = this._basepacketResourceCost; base.packetResourceCost = this._basepacketResourceCost;
} }
else else
{ {
base.packetResourceCost = this._basepacketResourceCost base.packetResourceCost = this._basepacketResourceCost
* (float)Math.Pow (this.transmitDistance / this.nominalRange, 2); * (float)Math.Pow (this.transmitDistance / this.nominalRange, 2);
} }
} }
   
// Before transmission, set packetSize. Per above, packet size increases with the inverse square of // Before transmission, set packetSize. Per above, packet size increases with the inverse square of
// distance. packetSize maxes out at _basepacketSize * maxDataFactor. // distance. packetSize maxes out at _basepacketSize * maxDataFactor.
protected void PreTransmit_SetPacketSize() protected void PreTransmit_SetPacketSize()
{ {
if (this.transmitDistance >= this.nominalRange) if (this.transmitDistance >= this.nominalRange)
{ {
base.packetSize = this._basepacketSize; base.packetSize = this._basepacketSize;
} }
else else
{ {
base.packetSize = Math.Min( base.packetSize = Math.Min(
this._basepacketSize * (float)Math.Pow (this.nominalRange / this.transmitDistance, 2), this._basepacketSize * (float)Math.Pow (this.nominalRange / this.transmitDistance, 2),
this._basepacketSize * this.maxDataFactor); this._basepacketSize * this.maxDataFactor);
} }
} }
   
// Override ModuleDataTransmitter.GetInfo to add nominal and maximum range to the VAB description. // Override ModuleDataTransmitter.GetInfo to add nominal and maximum range to the VAB description.
public override string GetInfo() public override string GetInfo()
{ {
string text = base.GetInfo(); string text = base.GetInfo();
text += "Nominal Range: " + Tools.MuMech_ToSI((double)this.nominalRange, 2) + "m\n"; text += "Nominal Range: " + Tools.MuMech_ToSI((double)this.nominalRange, 2) + "m\n";
text += "Maximum Range: " + Tools.MuMech_ToSI((double)this.maxTransmitDistance, 2) + "m\n"; text += "Maximum Range: " + Tools.MuMech_ToSI((double)this.maxTransmitDistance, 2) + "m\n";
return text; return text;
} }
   
// Override ModuleDataTransmitter.CanTransmit to return false when transmission is not possible. // Override ModuleDataTransmitter.CanTransmit to return false when transmission is not possible.
public new bool CanTransmit() public new bool CanTransmit()
{ {
  PartStates partState = this.part.State;
  if (partState == PartStates.DEAD || partState == PartStates.DEACTIVATED)
  {
  Tools.PostDebugMessage(string.Format(
  "{0}: {1} on {2} cannot transmit: {3}",
  this.GetType().Name,
  this.part.partInfo.title,
  this.vessel.vesselName,
  Enum.GetName(typeof(PartStates), partState)
  ));
  return false;
  }
return this.relay.CanTransmit(); return this.relay.CanTransmit();
} }
   
// Override ModuleDataTransmitter.TransmitData to check against CanTransmit and fail out when CanTransmit // Override ModuleDataTransmitter.TransmitData to check against CanTransmit and fail out when CanTransmit
// returns false. // returns false.
public new void TransmitData(List<ScienceData> dataQueue) public new void TransmitData(List<ScienceData> dataQueue)
{ {
if (this.CanTransmit()) if (this.CanTransmit())
{ {
base.TransmitData(dataQueue); base.TransmitData(dataQueue);
} }
else else
{ {
this.PostCannotTransmitError (); this.PostCannotTransmitError ();
} }
   
Tools.PostDebugMessage ( Tools.PostDebugMessage (
"distance: " + this.transmitDistance "distance: " + this.transmitDistance
+ " packetSize: " + this.packetSize + " packetSize: " + this.packetSize
+ " packetResourceCost: " + this.packetResourceCost + " packetResourceCost: " + this.packetResourceCost
); );
} }
   
// Override ModuleDataTransmitter.StartTransmission to check against CanTransmit and fail out when CanTransmit // Override ModuleDataTransmitter.StartTransmission to check against CanTransmit and fail out when CanTransmit
// returns false. // returns false.
public new void StartTransmission() public new void StartTransmission()
{ {
PreTransmit_SetPacketSize (); PreTransmit_SetPacketSize ();
PreTransmit_SetPacketResourceCost (); PreTransmit_SetPacketResourceCost ();
   
Tools.PostDebugMessage ( Tools.PostDebugMessage (
"distance: " + this.transmitDistance "distance: " + this.transmitDistance
+ " packetSize: " + this.packetSize + " packetSize: " + this.packetSize
+ " packetResourceCost: " + this.packetResourceCost + " packetResourceCost: " + this.packetResourceCost
); );
   
if (this.CanTransmit()) if (this.CanTransmit())
{ {
StringBuilder message = new StringBuilder(); StringBuilder message = new StringBuilder();
   
message.Append("[" + base.part.partInfo.title + "] "); message.Append("[");
  message.Append(base.part.partInfo.title);
  message.Append("]: ");
   
message.Append("Beginning transmission "); message.Append("Beginning transmission ");
   
if (this.relay.nearestRelay == null) if (this.relay.nearestRelay == null)
{ {
message.Append("directly to Kerbin."); message.Append("directly to Kerbin.");
} }
else else
{ {
message.Append("via relay " + this.relay.nearestRelay); message.Append("via ");
  message.Append(this.relay.nearestRelay);
} }
   
ScreenMessages.PostScreenMessage(message.ToString(), 4f, ScreenMessageStyle.UPPER_LEFT); ScreenMessages.PostScreenMessage(message.ToString(), 4f, ScreenMessageStyle.UPPER_LEFT);
   
base.StartTransmission(); base.StartTransmission();
} }
else else
{ {
this.PostCannotTransmitError (); this.PostCannotTransmitError ();
} }
} }
   
public void Update() public void Update()
{ {
if (this.actionUIUpdate) if (this.actionUIUpdate)
{ {
this.UItransmitDistance = Tools.MuMech_ToSI(this.transmitDistance) + "m"; this.UItransmitDistance = Tools.MuMech_ToSI(this.transmitDistance) + "m";
this.UIpacketSize = this.CanTransmit() ? Tools.MuMech_ToSI(this.DataRate) + "MiT" : "N/A"; this.UIpacketSize = this.CanTransmit() ? Tools.MuMech_ToSI(this.DataRate) + "MiT" : "N/A";
this.UIpacketCost = this.CanTransmit() ? Tools.MuMech_ToSI(this.DataResourceCost) + "E" : "N/A"; this.UIpacketCost = this.CanTransmit() ? Tools.MuMech_ToSI(this.DataResourceCost) + "E" : "N/A";
} }
} }
   
public void onPartActionUICreate(Part eventPart) public void onPartActionUICreate(Part eventPart)
{ {
if (eventPart == base.part) if (eventPart == base.part)
{ {
this.actionUIUpdate = true; this.actionUIUpdate = true;
} }
} }
   
public void onPartActionUIDismiss(Part eventPart) public void onPartActionUIDismiss(Part eventPart)
{ {
if (eventPart == base.part) if (eventPart == base.part)
{ {
this.actionUIUpdate = false; this.actionUIUpdate = false;
} }
  }
   
  public override string ToString()
  {
  StringBuilder msg = new StringBuilder();
   
  msg.Append(this.part.partInfo.title);
   
  if (vessel != null)
  {
  msg.Append(" on ");
  msg.Append(vessel.vesselName);
  }
   
  return msg.ToString();
} }
   
// When debugging, it's nice to have a button that just tells you everything. // When debugging, it's nice to have a button that just tells you everything.
#if DEBUG #if DEBUG
[KSPEvent (guiName = "Show Debug Info", active = true, guiActive = true)] [KSPEvent (guiName = "Show Debug Info", active = true, guiActive = true)]
public void DebugInfo() public void DebugInfo()
{ {
PreTransmit_SetPacketSize (); PreTransmit_SetPacketSize ();
PreTransmit_SetPacketResourceCost (); PreTransmit_SetPacketResourceCost ();
   
string msg = string.Format( string msg = string.Format(
"'{0}'\n" + "'{0}'\n" +
"_basepacketSize: {1}\n" + "_basepacketSize: {1}\n" +
"packetSize: {2}\n" + "packetSize: {2}\n" +
"_basepacketResourceCost: {3}\n" + "_basepacketResourceCost: {3}\n" +
"packetResourceCost: {4}\n" + "packetResourceCost: {4}\n" +
"maxTransmitDistance: {5}\n" + "maxTransmitDistance: {5}\n" +
"transmitDistance: {6}\n" + "transmitDistance: {6}\n" +
"nominalRange: {7}\n" + "nominalRange: {7}\n" +
"CanTransmit: {8}\n" + "CanTransmit: {8}\n" +
"DataRate: {9}\n" + "DataRate: {9}\n" +
"DataResourceCost: {10}\n" + "DataResourceCost: {10}\n" +
"TransmitterScore: {11}\n" + "TransmitterScore: {11}\n" +
"NearestRelay: {12}", "NearestRelay: {12}",
this.name, this.name,
this._basepacketSize, this._basepacketSize,
base.packetSize, base.packetSize,
this._basepacketResourceCost, this._basepacketResourceCost,
base.packetResourceCost, base.packetResourceCost,
this.maxTransmitDistance, this.maxTransmitDistance,
this.transmitDistance, this.transmitDistance,
this.nominalRange, this.nominalRange,
this.CanTransmit(), this.CanTransmit(),
this.DataRate, this.DataRate,
this.DataResourceCost, this.DataResourceCost,
ScienceUtil.GetTransmitterScore(this), ScienceUtil.GetTransmitterScore(this),
this.relay.FindNearestRelay() this.relay.FindNearestRelay()
); );
ScreenMessages.PostScreenMessage (new ScreenMessage (msg, 4f, ScreenMessageStyle.UPPER_RIGHT)); ScreenMessages.PostScreenMessage (new ScreenMessage (msg, 4f, ScreenMessageStyle.UPPER_RIGHT));
} }
#endif #endif
} }
} }
  // AntennaRange © 2014 toadicus
  //
  // AntennaRange provides incentive and requirements for the use of the various antenna parts.
  // Nominally, the breakdown is as follows:
  //
  // Communotron 16 - Suitable up to Kerbalsynchronous Orbit
  // Comms DTS-M1 - Suitable throughout the Kerbin subsystem
  // Communotron 88-88 - Suitable throughout the Kerbol system.
  //
  // This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a
  // copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
  //
  // This software uses the ModuleManager library © 2013 ialdabaoth, used under a Creative Commons Attribution-ShareAlike
  // 3.0 Uported License.
  //
  // This software uses code from the MuMechLib library, © 2013 r4m0n, used under the GNU GPL version 3.
  using System.Reflection;
  using System.Runtime.CompilerServices;
 
  // Information about this assembly is defined by the following attributes.
  // Change them to the values specific to your project.
  [assembly: AssemblyTitle("AntennaRange")]
  [assembly: AssemblyDescription("Enforce and Encourage Antenna Diversity")]
  [assembly: AssemblyCopyright("toadicus")]
  // The assembly version has the format "{Major}.{Minor}.{Build}.{Revision}".
  // The form "{Major}.{Minor}.*" will automatically update the build and revision,
  // and "{Major}.{Minor}.{Build}.*" will update just the revision.
  [assembly: AssemblyVersion("0.6.3.*")]
  // The following attributes are used to specify the signing key for the assembly,
  // if desired. See the Mono documentation for more information about signing.
  //[assembly: AssemblyDelaySign(false)]
  //[assembly: AssemblyKeyFile("")]
 
 
  2014-01-14 toadicus <>
 
  * AssemblyInfo.cs: New AssemblyInfo file for reason.
 
 
// AntennaRange © 2014 toadicus // AntennaRange © 2014 toadicus
// //
// AntennaRange provides incentive and requirements for the use of the various antenna parts. // AntennaRange provides incentive and requirements for the use of the various antenna parts.
// Nominally, the breakdown is as follows: // Nominally, the breakdown is as follows:
// //
// Communotron 16 - Suitable up to Kerbalsynchronous Orbit // Communotron 16 - Suitable up to Kerbalsynchronous Orbit
// Comms DTS-M1 - Suitable throughout the Kerbin subsystem // Comms DTS-M1 - Suitable throughout the Kerbin subsystem
// Communotron 88-88 - Suitable throughout the Kerbol system. // Communotron 88-88 - Suitable throughout the Kerbol system.
// //
// This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a // This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a
// copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ // copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
// //
// This software uses the ModuleManager library © 2013 ialdabaoth, used under a Creative Commons Attribution-ShareAlike // This software uses the ModuleManager library © 2013 ialdabaoth, used under a Creative Commons Attribution-ShareAlike
// 3.0 Uported License. // 3.0 Uported License.
// //
// This software uses code from the MuMechLib library, © 2013 r4m0n, used under the GNU GPL version 3. // This software uses code from the MuMechLib library, © 2013 r4m0n, used under the GNU GPL version 3.
   
using System; using System;
using System.Linq; using System.Linq;
   
namespace AntennaRange namespace AntennaRange
{ {
/* /*
* Wrapper class for ProtoPartModuleSnapshot extending AntennaRelay and implementing IAntennaRelay. * Wrapper class for ProtoPartModuleSnapshot extending AntennaRelay and implementing IAntennaRelay.
* This is used for finding relays in unloaded Vessels. * This is used for finding relays in unloaded Vessels.
* */ * */
public class ProtoAntennaRelay : AntennaRelay, IAntennaRelay public class ProtoAntennaRelay : AntennaRelay, IAntennaRelay
{ {
// Stores the relay prefab // Stores the relay prefab
protected IAntennaRelay relayPrefab; protected IAntennaRelay relayPrefab;
   
  // Stores the prototype part so we can make sure we haven't exploded or so.
  protected ProtoPartSnapshot protoPart;
   
/// <summary> /// <summary>
/// The maximum distance at which this transmitter can operate. /// The maximum distance at which this transmitter can operate.
/// </summary> /// </summary>
/// <value>The max transmit distance.</value> /// <value>The max transmit distance.</value>
public override float maxTransmitDistance public override float maxTransmitDistance
{ {
get get
{ {
return relayPrefab.maxTransmitDistance; return relayPrefab.maxTransmitDistance;
} }
} }
   
/// <summary> /// <summary>
/// Gets a value indicating whether this <see cref="AntennaRange.ProtoDataTransmitter"/> has been checked during /// Gets a value indicating whether this <see cref="AntennaRange.ProtoDataTransmitter"/> has been checked during
/// the current relay attempt. /// the current relay attempt.
/// </summary> /// </summary>
/// <value><c>true</c> if relay checked; otherwise, <c>false</c>.</value> /// <value><c>true</c> if relay checked; otherwise, <c>false</c>.</value>
public override bool relayChecked public override bool relayChecked
{ {
get; get;
protected set; protected set;
} }
   
/// <summary> /// <summary>
  /// Gets the underlying part's title.
  /// </summary>
  /// <value>The title.</value>
  public string title
  {
  get
  {
  return this.protoPart.partInfo.title;
  }
  }
   
  public override bool CanTransmit()
  {
  PartStates partState = (PartStates)this.protoPart.state;
  if (partState == PartStates.DEAD || partState == PartStates.DEACTIVATED)
  {
  Tools.PostDebugMessage(string.Format(
  "{0}: {1} on {2} cannot transmit: {3}",
  this.GetType().Name,
  this.title,
  this.vessel.vesselName,
  Enum.GetName(typeof(PartStates), partState)
  ));
  return false;
  }
  return base.CanTransmit();
  }
   
  public override string ToString()
  {
  return string.Format(
  "{0} on {1}.",
  this.title,
  this.protoPart.pVesselRef.vesselName
  );
  }
   
  /// <summary>
/// Initializes a new instance of the <see cref="AntennaRange.ProtoAntennaRelay"/> class. /// Initializes a new instance of the <see cref="AntennaRange.ProtoAntennaRelay"/> class.
/// </summary> /// </summary>
/// <param name="ms">The ProtoPartModuleSnapshot to wrap</param> /// <param name="ms">The ProtoPartModuleSnapshot to wrap</param>
/// <param name="vessel">The parent Vessel</param> /// <param name="vessel">The parent Vessel</param>
public ProtoAntennaRelay(IAntennaRelay prefabRelay, Vessel vessel) : base(vessel) public ProtoAntennaRelay(IAntennaRelay prefabRelay, ProtoPartSnapshot pps) : base(pps.pVesselRef.vesselRef)
{ {
this.relayPrefab = prefabRelay; this.relayPrefab = prefabRelay;
this.vessel = vessel; this.protoPart = pps;
  this.vessel = pps.pVesselRef.vesselRef;
  }
   
  ~ProtoAntennaRelay()
  {
  Tools.PostDebugMessage(string.Format(
  "{0}: destroyed",
  this.ToString()
  ));
} }
} }
} }
   
   
file:b/RelayDatabase.cs (new)
  // AntennaRange © 2014 toadicus
  //
  // This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a
  // copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
 
  using KSP;
  using System;
  using System.Collections.Generic;
  using System.Linq;
  using System.Text;
  using UnityEngine;
 
  namespace AntennaRange
  {
  public class RelayDatabase
  {
  /*
  * Static members
  * */
  // Singleton storage
  protected static RelayDatabase _instance;
  // Gets the singleton
  public static RelayDatabase Instance
  {
  get
  {
  if (_instance == null)
  {
  _instance = new RelayDatabase();
  }
 
  return _instance;
  }
  }
 
  /*
  * Instance members
  * */
 
  /*
  * Fields
  * */
  // Vessel.id-keyed hash table of Part.GetHashCode()-keyed tables of relay objects.
  protected Dictionary<Guid, Dictionary<int, IAntennaRelay>> relayDatabase;
 
  // Vessel.id-keyed hash table of part counts, used for caching
  protected Dictionary<Guid, int> vesselPartCountTable;
 
  // Vessel.id-keyed hash table of booleans to track what vessels have been checked so far this time.
  public Dictionary<Guid, bool> CheckedVesselsTable;
 
  protected int cacheHits;
  protected int cacheMisses;
 
  /*
  * Properties
  * */
  // Gets the Part-hashed table of relays in a given vessel
  public Dictionary<int, IAntennaRelay> this [Vessel vessel]
  {
  get
  {
  // If we don't have an entry for this vessel...
  if (!this.ContainsKey(vessel.id))
  {
  // ...Generate an entry for this vessel.
  this.AddVessel(vessel);
  this.cacheMisses++;
  }
  // If our part count disagrees with the vessel's part count...
  else if (this.vesselPartCountTable[vessel.id] != vessel.Parts.Count)
  {
  // ...Update the our vessel in the cache
  this.UpdateVessel(vessel);
  this.cacheMisses++;
  }
  // Otherwise, it's a hit
  else
  {
  this.cacheHits++;
  }
 
  // Return the Part-hashed table of relays for this vessel
  return relayDatabase[vessel.id];
  }
  }
 
  /*
  * Methods
  * */
  // Adds a vessel to the database
  // The return for this function isn't used yet, but seems useful for potential future API-uses
  public bool AddVessel(Vessel vessel)
  {
  // If this vessel is already here...
  if (this.ContainsKey(vessel))
  {
  // ...post an error
  Debug.LogWarning(string.Format(
  "{0}: Cannot add vessel '{1}' (id: {2}): Already in database.",
  this.GetType().Name,
  vessel.vesselName,
  vessel.id
  ));
 
  // ...and refuse to add
  return false;
  }
  // otherwise, add the vessel to our tables...
  else
  {
  // Build an empty table...
  this.relayDatabase[vessel.id] = new Dictionary<int, IAntennaRelay>();
 
  // Update the empty index
  this.UpdateVessel(vessel);
 
  // Return success
  return true;
  }
  }
 
  // Update the vessel's entry in the table
  public void UpdateVessel(Vessel vessel)
  {
  // Squak if the database doesn't have the vessel
  if (!this.ContainsKey(vessel))
  {
  throw new InvalidOperationException(string.Format(
  "{0}: Update called for vessel '{1}' (id: {2}) not in database: vessel will be added.",
  this.GetType().Name,
  vessel.vesselName,
  vessel.id
  ));
  }
 
  Dictionary<int, IAntennaRelay> vesselTable = this.relayDatabase[vessel.id];
 
  // Actually build and assign the table
  this.getVesselRelays(vessel, ref vesselTable);
  // Set the part count
  this.vesselPartCountTable[vessel.id] = vessel.Parts.Count;
  }
 
  // Remove a vessel from the cache, if it exists.
  public void DirtyVessel(Vessel vessel)
  {
  if (this.relayDatabase.ContainsKey(vessel.id))
  {
  this.relayDatabase.Remove(vessel.id);
  }
  if (this.vesselPartCountTable.ContainsKey(vessel.id))
  {
  this.vesselPartCountTable.Remove(vessel.id);
  }
  }
 
  // Returns true if both the relayDatabase and the vesselPartCountDB contain the vessel id.
  public bool ContainsKey(Guid key)
  {
  return this.relayDatabase.ContainsKey(key);
  }
 
  // Returns true if both the relayDatabase and the vesselPartCountDB contain the vessel.
  public bool ContainsKey(Vessel vessel)
  {
  return this.ContainsKey(vessel.id);
  }
 
  // Runs when a vessel is modified (or when we switch to one, to catch docking events)
  public void onVesselEvent(Vessel vessel)
  {
  // If we have this vessel in our cache...
  if (this.ContainsKey(vessel))
  {
  // If our part counts disagree (such as if a part has been added or broken off,
  // or if we've just docked or undocked)...
  if (this.vesselPartCountTable[vessel.id] != vessel.Parts.Count || vessel.loaded)
  {
  Tools.PostDebugMessage(string.Format(
  "{0}: dirtying cache for vessel '{1}' ({2}).",
  this.GetType().Name,
  vessel.vesselName,
  vessel.id
  ));
 
  // Dirty the cache (real vessels will never have negative part counts)
  this.DirtyVessel(vessel);
  }
  }
  }
 
  // Runs when the player requests a scene change, such as when changing vessels or leaving flight.
  public void onSceneChange(GameScenes scene)
  {
  // If the active vessel is a real thing...
  if (FlightGlobals.ActiveVessel != null)
  {
  // ... dirty its cache
  this.onVesselEvent(FlightGlobals.ActiveVessel);
  }
  }
 
  // Runs when parts are undocked
  public void onPartEvent(Part part)
  {
  if (part != null && part.vessel != null)
  {
  this.onVesselEvent(part.vessel);
  }
  }
 
  // Runs when parts are coupled, as in docking
  public void onFromPartToPartEvent(GameEvents.FromToAction<Part, Part> data)
  {
  this.onPartEvent(data.from);
  this.onPartEvent(data.to);
  }
 
  // Produce a Part-hashed table of relays for the given vessel
  protected void getVesselRelays(Vessel vessel, ref Dictionary<int, IAntennaRelay> relays)
  {
  // We're going to completely regen this table, so dump the current contents.
  relays.Clear();
 
  Tools.PostDebugMessage(string.Format(
  "{0}: Getting antenna relays from vessel {1}.",
  "IAntennaRelay",
  vessel.vesselName
  ));
 
  // If the vessel is loaded, we can fetch modules implementing IAntennaRelay directly.
  if (vessel.loaded) {
  Tools.PostDebugMessage(string.Format(
  "{0}: vessel {1} is loaded, searching for modules in loaded parts.",
  "IAntennaRelay",
  vessel.vesselName
  ));
 
  // Loop through the Parts in the Vessel...
  foreach (Part part in vessel.Parts)
  {
  // ...loop through the PartModules in the Part...
  foreach (PartModule module in part.Modules)
  {
  // ...if the module is a relay...
  if (module is IAntennaRelay)
  {
  // ...add the module to the table
  relays.Add(part.GetHashCode(), module as IAntennaRelay);
  // ...neglect relay objects after the first in each part.
  break;
  }
  }
  }
  }
  // If the vessel is not loaded, we need to build ProtoAntennaRelays when we find relay ProtoPartSnapshots.
  else
  {
  Tools.PostDebugMessage(string.Format(
  "{0}: vessel {1} is not loaded, searching for modules in prototype parts.",
  this.GetType().Name,
  vessel.vesselName
  ));
 
  // Loop through the ProtoPartModuleSnapshots in the Vessel...
  foreach (ProtoPartSnapshot pps in vessel.protoVessel.protoPartSnapshots)
  {
  Tools.PostDebugMessage(string.Format(
  "{0}: Searching in protopartsnapshot {1}",
  this.GetType().Name,
  pps
  ));
 
  // ...Fetch the prefab, because it's more useful for what we're doing.
  Part partPrefab = PartLoader.getPartInfoByName(pps.partName).partPrefab;
 
  Tools.PostDebugMessage(string.Format(
  "{0}: Got partPrefab {1} in protopartsnapshot {2}",
  this.GetType().Name,
  partPrefab,
  pps
  ));
 
  // ...loop through the PartModules in the prefab...
  foreach (PartModule module in partPrefab.Modules)
  {
  Tools.PostDebugMessage(string.Format(
  "{0}: Searching in partmodule {1}",
  this.GetType().Name,
  module
  ));
 
  // ...if the module is a relay...
  if (module is IAntennaRelay)
  {
  Tools.PostDebugMessage(string.Format(
  "{0}: partmodule {1} is antennarelay",
  this.GetType().Name,
  module
  ));
 
  // ...build a new ProtoAntennaRelay and add it to the table
  relays.Add(pps.GetHashCode(), new ProtoAntennaRelay(module as IAntennaRelay, pps));
  // ...neglect relay objects after the first in each part.
  break;
  }
  }
  }
  }
 
  Tools.PostDebugMessage(string.Format(
  "{0}: vessel '{1}' ({2}) has {3} transmitters.",
  "IAntennaRelay",
  vessel.vesselName,
  vessel.id,
  relays.Count
  ));
  }
 
  // Construct the singleton
  protected RelayDatabase()
  {
  // Initialize the databases
  this.relayDatabase = new Dictionary<Guid, Dictionary<int, IAntennaRelay>>();
  this.vesselPartCountTable = new Dictionary<Guid, int>();
  this.CheckedVesselsTable = new Dictionary<Guid, bool>();
 
  this.cacheHits = 0;
  this.cacheMisses = 0;
 
  // Subscribe to some events
  GameEvents.onVesselWasModified.Add(this.onVesselEvent);
  GameEvents.onVesselChange.Add(this.onVesselEvent);
  GameEvents.onVesselDestroy.Add(this.onVesselEvent);
  GameEvents.onGameSceneLoadRequested.Add(this.onSceneChange);
  GameEvents.onPartCouple.Add(this.onFromPartToPartEvent);
  GameEvents.onPartUndock.Add(this.onPartEvent);
  }
 
  ~RelayDatabase()
  {
  // Unsubscribe from the events
  GameEvents.onVesselWasModified.Remove(this.onVesselEvent);
  GameEvents.onVesselChange.Remove(this.onVesselEvent);
  GameEvents.onVesselDestroy.Remove(this.onVesselEvent);
  GameEvents.onGameSceneLoadRequested.Remove(this.onSceneChange);
  GameEvents.onPartCouple.Remove(this.onFromPartToPartEvent);
  GameEvents.onPartUndock.Remove(this.onPartEvent);
 
  Tools.PostDebugMessage(this.GetType().Name + " destroyed.");
 
  KSPLog.print(string.Format(
  "{0} destructed. Cache hits: {1}, misses: {2}, hit rate: {3:P1}",
  this.GetType().Name,
  this.cacheHits,
  this.cacheMisses,
  (float)this.cacheHits / (float)(this.cacheMisses + this.cacheHits)
  ));
  }
 
  #if DEBUG
  public void Dump()
  {
  StringBuilder sb = new StringBuilder();
 
  sb.Append("Dumping RelayDatabase:");
 
  foreach (Guid id in this.relayDatabase.Keys)
  {
  sb.AppendFormat("\nVessel {0}:", id);
 
  foreach (IAntennaRelay relay in this.relayDatabase[id].Values)
  {
  sb.AppendFormat("\n\t{0}", relay.ToString());
  }
  }
 
  Tools.PostDebugMessage(sb.ToString());
  }
  #endif
  }
  }