1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 | /* * AntennaRange © 2013 toadicus * * AntennaRange provides incentive and requirements for the use of the various antenna parts. * Nominally, the breakdown is as follows: * * Communotron 16 - Suitable up to Kerbalsynchronous Orbit * Comms DTS-M1 - Suitable throughout the Kerbin subsystem * Communotron 88-88 - Suitable throughout the Kerbol system. * * This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a * copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ * * This software uses the ModuleManager library © 2013 ialdabaoth, used under a Creative Commons Attribution-ShareAlike 3.0 Uported License. * * This software uses code from the MuMechLib library, © 2013 r4m0n, used under the GNU GPL version 3. * */ using System; using System.Collections.Generic; using KSP; namespace AntennaRange { /* * ModuleLimitedDataTransmitter is designed as a drop-in replacement for ModuleDataTransmitter, and handles range- * finding, power scaling, and data scaling for antennas during science transmission. Its functionality varies with * three tunables: nominalRange, maxPowerFactor, and maxDataFactor, set in .cfg files. * * In general, the scaling functions assume the following relation: * * D² α P/R, * * where D is the total transmission distance, P is the transmission power, and R is the data rate. * * */ public class ModuleLimitedDataTransmitter : ModuleDataTransmitter, IScienceDataTransmitter { // Stores the packetResourceCost as defined in the .cfg file. protected float _basepacketResourceCost; // Stores the packetSize as defined in the .cfg file. protected float _basepacketSize; // We don't have a Bard, so we're hiding Kerbin here. protected CelestialBody _Kerbin; // Returns the current distance to the center of Kerbin, which is totally where the Kerbals keep their radioes. protected double transmitDistance { get { Vector3d KerbinPos = this._Kerbin.position; Vector3d ActivePos = base.vessel.GetWorldPos3D(); return (ActivePos - KerbinPos).magnitude; } } // Returns the maximum distance this module can transmit public double maxTransmitDistance { get { return Math.Sqrt (this.maxPowerFactor) * this.nominalRange; } } // The distance from Kerbin at which the antenna will perform exactly as prescribed by packetResourceCost // and packetSize. [KSPField(isPersistant = false)] public float nominalRange; // The multiplier on packetResourceCost that defines the maximum power output of the antenna. When the power // cost exceeds packetResourceCost * maxPowerFactor, transmission will fail. [KSPField(isPersistant = false)] public float maxPowerFactor; // The multipler on packetSize that defines the maximum data bandwidth of the antenna. [KSPField(isPersistant = false)] public float maxDataFactor; /* * The next two functions overwrite the behavior of the stock functions and do not perform equivalently, except * in that they both return floats. Here's some quick justification: * * The stock implementation of GetTransmitterScore (which I cannot override) is: * Score = (1 + DataResourceCost) / DataRate * * The stock DataRate and DataResourceCost are: * DataRate = packetSize / packetInterval * DataResourceCost = packetResourceCost / packetSize * * So, the resulting score is essentially in terms of joules per byte per baud. Rearranging that a bit, it * could also look like joule-seconds per byte per byte, or newton-meter-seconds per byte per byte. Either way, * that metric is not a very reasonable one. * * Two metrics that might make more sense are joules per byte or joules per byte per second. The latter case * would look like: * DataRate = packetSize / packetInterval * DataResourceCost = packetResourceCost * * The former case, which I've chosen to implement below, is: * DataRate = packetSize * DataResourceCost = packetResourceCost * * So... hopefully that doesn't screw with anything else. * */ // Override ModuleDataTransmitter.DataRate to just return packetSize, because we want antennas to be scored in // terms of joules/byte public new float DataRate { get { PreTransmit_SetPacketSize(); return this.packetSize; } } // Override ModuleDataTransmitter.DataResourceCost to just return packetResourceCost, because we want antennas // to be scored in terms of joules/byte public new float DataResourceCost { get { PreTransmit_SetPacketResourceCost(); return this.packetResourceCost; } } // Build ALL the objects. public ModuleLimitedDataTransmitter () : base() { } // At least once, when the module starts with a state on the launch pad or later, go find Kerbin. public override void OnStart (StartState state) { base.OnStart (state); if (state >= StartState.PreLaunch && this._Kerbin == null) { // Go fetch Kerbin, because it is tricksy and hides from us. List<CelestialBody> bodies = FlightGlobals.Bodies; foreach (CelestialBody body in bodies) { if (body.name == "Kerbin") { this._Kerbin = body; break; } } } } // When the module loads, fetch the Squad KSPFields from the base. This is necessary in part because // overloading packetSize and packetResourceCostinto a property in ModuleLimitedDataTransmitter didn't // work. public override void OnLoad(ConfigNode node) { this.Fields.Load(node); base.Fields.Load(node); base.OnLoad (node); this._basepacketSize = base.packetSize; this._basepacketResourceCost = base.packetResourceCost; Tools.PostDebugMessage(string.Format( "{0} loaded:\n" + "packetSize: {1}\n" + "packetResourceCost: {2}\n" + "nominalRange: {3}\n" + "maxPowerFactor: {4}\n" + "maxDataFactor: {5}\n", this.name, base.packetSize, this._basepacketResourceCost, this.nominalRange, this.maxPowerFactor, this.maxDataFactor )); } // Post an error in the communication messages describing the reason transmission has failed. Currently there // is only one reason for this. protected void PostCannotTransmitError() { string ErrorText = string.Format ( "Unable to transmit: out of range! Maximum range = {0}m; Current range = {1}m.", Tools.MuMech_ToSI((double)this.maxTransmitDistance), Tools.MuMech_ToSI((double)this.transmitDistance)); ScreenMessages.PostScreenMessage (new ScreenMessage (ErrorText, 4f, ScreenMessageStyle.UPPER_LEFT)); } // Before transmission, set packetResourceCost. Per above, packet cost increases with the square of // distance. packetResourceCost maxes out at _basepacketResourceCost * maxPowerFactor, at which point // transmission fails (see CanTransmit). protected void PreTransmit_SetPacketResourceCost() { if (this.transmitDistance <= this.nominalRange) { base.packetResourceCost = this._basepacketResourceCost; } else { base.packetResourceCost = this._basepacketResourceCost * (float)Math.Pow (this.transmitDistance / this.nominalRange, 2); } } // Before transmission, set packetSize. Per above, packet size increases with the inverse square of // distance. packetSize maxes out at _basepacketSize * maxDataFactor. protected void PreTransmit_SetPacketSize() { if (this.transmitDistance >= this.nominalRange) { base.packetSize = this._basepacketSize; } else { base.packetSize = Math.Min( this._basepacketSize * (float)Math.Pow (this.nominalRange / this.transmitDistance, 2), this._basepacketSize * this.maxDataFactor); } } // Override ModuleDataTransmitter.GetInfo to add nominal and maximum range to the VAB description. public override string GetInfo() { string text = base.GetInfo(); text += "Nominal Range: " + Tools.MuMech_ToSI((double)this.nominalRange) + "m\n"; text += "Maximum Range: " + Tools.MuMech_ToSI((double)this.maxTransmitDistance) + "m\n"; return text; } // Override ModuleDataTransmitter.CanTransmit to return false when transmission is not possible. public new bool CanTransmit() { if (this.transmitDistance > this.maxTransmitDistance) { return false; } return true; } // Override ModuleDataTransmitter.TransmitData to check against CanTransmit and fail out when CanTransmit // returns false. public new void TransmitData(List<ScienceData> dataQueue) { PreTransmit_SetPacketSize (); PreTransmit_SetPacketResourceCost (); Tools.PostDebugMessage ( "distance: " + this.transmitDistance + " packetSize: " + this.packetSize + " packetResourceCost: " + this.packetResourceCost ); if (this.CanTransmit()) { base.TransmitData(dataQueue); } else { this.PostCannotTransmitError (); } } // Override ModuleDataTransmitter.StartTransmission to check against CanTransmit and fail out when CanTransmit // returns false. public new void StartTransmission() { PreTransmit_SetPacketSize (); PreTransmit_SetPacketResourceCost (); Tools.PostDebugMessage ( "distance: " + this.transmitDistance + " packetSize: " + this.packetSize + " packetResourceCost: " + this.packetResourceCost ); if (this.CanTransmit()) { base.StartTransmission(); } else { this.PostCannotTransmitError (); } } // When debugging, it's nice to have a button that just tells you everything. #if DEBUG [KSPEvent (guiName = "Show Debug Info", active = true, guiActive = true)] public void DebugInfo() { PreTransmit_SetPacketSize (); PreTransmit_SetPacketResourceCost (); string msg = string.Format( "'{0}'\n" + "_basepacketSize: {1}\n" + "packetSize: {2}\n" + "_basepacketResourceCost: {3}\n" + "packetResourceCost: {4}\n" + "maxTransmitDistance: {5}\n" + "transmitDistance: {6}\n" + "nominalRange: {7}\n" + "CanTransmit: {8}\n" + "DataRate: {9}\n" + "DataResourceCost: {10}\n" + "TransmitterScore: {11}", this.name, this._basepacketSize, base.packetSize, this._basepacketResourceCost, base.packetResourceCost, this.maxTransmitDistance, this.transmitDistance, this.nominalRange, this.CanTransmit(), this.DataRate, this.DataResourceCost, ScienceUtil.GetTransmitterScore(this) ); ScreenMessages.PostScreenMessage (new ScreenMessage (msg, 4f, ScreenMessageStyle.UPPER_RIGHT)); } #endif } public static class Tools { // When debugging, be verbose. The Conditional attribute prevents this from firing when not DEBUGging. [System.Diagnostics.Conditional("DEBUG")] public static void PostDebugMessage(string Msg) { if (HighLogic.LoadedScene > GameScenes.SPACECENTER) { ScreenMessage Message = new ScreenMessage(Msg, 4f, ScreenMessageStyle.LOWER_CENTER); ScreenMessages.PostScreenMessage(Message); } else { KSPLog.print(Msg); } } /* * MuMech_ToSI is a part of the MuMechLib library, © 2013 r4m0n, used under the GNU GPL version 3. * */ public static string MuMech_ToSI(double d, int digits = 3, int MinMagnitude = 0, int MaxMagnitude = int.MaxValue) { float exponent = (float)Math.Log10(Math.Abs(d)); exponent = UnityEngine.Mathf.Clamp(exponent, (float)MinMagnitude, (float)MaxMagnitude); if (exponent >= 0) { switch ((int)Math.Floor(exponent)) { case 0: case 1: case 2: return d.ToString("F" + digits); case 3: case 4: case 5: return (d / 1e3).ToString("F" + digits) + "k"; case 6: case 7: case 8: return (d / 1e6).ToString("F" + digits) + "M"; case 9: case 10: case 11: return (d / 1e9).ToString("F" + digits) + "G"; case 12: case 13: case 14: return (d / 1e12).ToString("F" + digits) + "T"; case 15: case 16: case 17: return (d / 1e15).ToString("F" + digits) + "P"; case 18: case 19: case 20: return (d / 1e18).ToString("F" + digits) + "E"; case 21: case 22: case 23: return (d / 1e21).ToString("F" + digits) + "Z"; default: return (d / 1e24).ToString("F" + digits) + "Y"; } } else if (exponent < 0) { switch ((int)Math.Floor(exponent)) { case -1: case -2: case -3: return (d * 1e3).ToString("F" + digits) + "m"; case -4: case -5: case -6: return (d * 1e6).ToString("F" + digits) + "μ"; case -7: case -8: case -9: return (d * 1e9).ToString("F" + digits) + "n"; case -10: case -11: case -12: return (d * 1e12).ToString("F" + digits) + "p"; case -13: case -14: case -15: return (d * 1e15).ToString("F" + digits) + "f"; case -16: case -17: case -18: return (d * 1e18).ToString("F" + digits) + "a"; case -19: case -20: case -21: return (d * 1e21).ToString("F" + digits) + "z"; default: return (d * 1e24).ToString("F" + digits) + "y"; } } else { return "0"; } } } } |